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Modelling transport and long-term creep in concrete materials is a difficult problem when the complexity
of the microstructure is taken into account, because it is hard to predict instantaneous elastic responses.
In this work, several numerical methods are compared to assess their properties and suitability to model
concrete-like microstructures with large phase properties contrast. The methods are classical finite ele-
ments, a novel extended finite element method (l-XFEM), an unconstrained heuristic meshing technique
(AMIE), and a locally homogenising preprocessor in combination with various solvers (BENHUR). The bench-
mark itself consists of a number of simple and complex microstructures, which are tested with a range of
phase contrasts designed to cover the needs of creep and transport modelling in concrete. The calcula-
tions are performed assuming linear elasticity and thermal conduction. The methods are compared in
term of precision, ease of implementation and appropriateness to the problem type. We find that XFEM

is the most suitable when the mesh if coarse, and methods based on Cartesian grids are best when a very
fine mesh can be used. Finite element methods are good compromises with high flexibility.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction and literature background

Understanding the link between microstructural make-up and
material properties is a central aspect of the study of composites.
Concrete is the most used composite material in the world and is
critical in civil engineering applications, notably for critical instal-
lations, such as nuclear plants. Furthermore, it is used for very long
term applications, for example as a casing material for nuclear
waste management. Understanding and predicting its mechanical
behaviour is important for design, maintenance and diagnostic
applications. Concrete is composed of aggregates following a con-
tinuous gradation curve which are embedded in a cement paste
matrix. For simulation purposes, new tomography techniques have
made it practical to obtain images of microstructures [1], or recon-
structions based on gradation curves can be used as in the present
work. However, making predictions on the mechanical properties
of concrete from its mix design is still an open question [2].
Although the difficulties in this mostly come from the develop-
ment of the strength of the cement paste, the make-up of the com-
posite remains a critical aspect of the question. This work focuses
on the description of numerical homogenisation tools which can
be used to derive material behaviour applicable to the simulation
of structures.

The general problem of obtaining the apparent or homogenised
properties of a composite from the mechanical properties of its
constituents and their geometrical make-up can be approached
in a number of ways. Analytical techniques, such as the Mori and
Tanaka [3] and self-consistent schemes [4] can give good esti-
mates. However these techniques are limited if the phase contrasts
are too high or the morphology too complex. Furthermore, homog-
enisation schemes such as the Mori–Tanaka scheme are not appro-
priate for large inclusion volume fractions (above 30–40%) [5,6].
Progress has been made in the effective medium theory for peri-
odic solids with respect to phase contrast [7]. However in concrete,
although the phase stiffness contrast is fairly low for elastic appli-
cations, the sizes of aggregates span orders of magnitude with no
scale separation. Further, when considering visco-elastic problems,
the phase contrasts can be enormous. Numerical modelling using
microstructures in representative elementary volumes (REV) is the
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alternative approach when analytical methods fall short. The size
of the REV as well as the importance of boundary conditions has
been studied by Huet as well as by Kanit [8,9]. Indeed, explicit
modelling of the microstructure is not a new approach [10–13],
but it is not usually practical to model fully detailed geometry at
the micro-scale in 3D and application-specific trade-offs are made
[14]; even 2D simulations try to limit the number of represented
aggregates as in [15].

In the case of concrete, a representative elementary volume is
approximately 3–5 times the size of the maximum aggregate
diameter [16]. Although it is in any case neither possible nor nec-
essary to model every grain of sand in such a volume, it is still nec-
essary to model the larger grains, which number in the thousands.
The geometry can be produced by generating the aggregates artifi-
cially from statistical information [14,17], or from tomography
data [18,1]. In a classical finite element approach, every grain must
be meshed and the mesh must be verified for geometrical accuracy
and refined near the interfaces. This yields extremely large number
of elements. Therefore strategies have to be devised which, given
constraints on the number of degrees of freedom, can best approx-
imate the properties of real microstructures. When the microstruc-
ture is obtained from tomography, a voxel-based approach is
natural, but this introduces important distortions at the interfaces
and induces artificial anisotropy, as the normals to phase surfaces
can only have three orientations.

Approximations are introduced by the numerical methods
themselves. Numerical errors can come from the size of elements,
which may be too large to properly represent the strain or flux gra-
dients. Conforming adaptive meshes can double the convergence of
the error with respect to element size [19], but are not practical
with intrinsically multi-scale concrete geometries. If the number
of degrees of freedom is limited, the boundaries between the
phases are poorly approximated and if the solver requires Carte-
sian grids, the mesh might not be constrained to the microstruc-
ture at all. Adaptive strategies, notably regarding the time-step in
transport of multiphysics problems have been used. This is notably
the case in the work of Zodhi and colleagues [12,20]. Beyond errors
due to high field gradients not being adequately captured, produc-
ing a non-conforming geometry can affect the results in a number
of ways: artificial connection of disconnected grains, approxima-
tions of the boundaries of grains such that the volume fraction
of the phases in the microstructure can be affected. These
effects can significantly affect the apparent properties of the
microstructure.

This paper presents a number of approaches developed inde-
pendently as attempts to model concrete through its microstruc-
ture. To solve the problems highlighted above, different methods
to generate and attribute phase behaviour to the elements are
used. All the methods have in common that they attempt to repro-
duce the effect of the interfaces present in the input geometry. The
well-established FEM method uses compact elements in which the
phase is constant. Thus, the discretisation scheme is responsible
for the accuracy of the representation of boundaries. To accurately
reproduce the effect of complex interfaces passing through the ele-
ments, XFEM-based approaches introduce enrichment functions
with discontinuous derivatives across the interface in the classical
FEM approximation. BENHUR is a preprocessor which attributes
homogenised behaviour to elements overlapping grains; it is tested
in conjunction with a number of numerical methods on Cartesian
grids. AMIE uses a hybrid approach: it uses a meshing heuristic to
generate a mesh which follows as much as possible the geometri-
cal boundaries imposed by the microstructure, but with a hard
constraint on the number of degrees of freedom and not on the
geometry. To compare the methods, a set of benchmarks were de-
vised, and the results of theses novel approaches were compared to
that of a classical finite element scheme.
The ability of the methods to recover apparent properties are
tested with both a steady-state transport problem and a linear
elastic one with homogeneous boundary conditions. Indeed non-
linear problems can only be considered once the linear case is well
understood. The input microstructures have perfect interfaces, and
the numerical difficulty of the problem come from the geometric
complexity and the high phase contrasts. The precision reached
for each of the methods is reported as a function of the typical ele-
ment size. The benchmark tests are first described in detail, then
the results are presented and discussed.
2. Description of the tests

The general behaviour of the numerical methods is first estab-
lished using microstructures consisting in a single sphere or octa-
hedron in the volume. The sphere set-up has no geometrical
singularities, and reflects the convergence of the numerical meth-
od, rather than the convergence of the errors due to geometrical
approximations. It also highlights the difference between methods
allowing curved surfaces on their elements, such as the FEM when
using quadratic elements with intermediate nodes projected on
the sphere surface. The sharp edges of the octahedron highlight
how the presence of stress or flux concentrators affect the preci-
sion of the simulations, although its edges and vertices are rounded
in the l-XFEM approximation, due to the usage of level-sets. Both
the octahedron and the sphere serve as proof of concept for those
methods which use homogenised elements such as BENHUR, or level
sets to describe geometries, such as XFEM, as the underlying Carte-
sian grids converge to the exact geometries as they are refined.

The core of the benchmark is the simulation of concrete- and
mortar-like microstructures. The first microstructure, ‘‘B11’’, is de-
signed for simulations assuming periodic boundaries. It is com-
posed of 2024 spheres with a size distribution resembling that of
concrete. These spheres are well separated, but overlap the volume
boundaries. The second ‘‘B3200’’ is a mortar-like microstructure,
where all the spheres are confined within the volume. The repul-
sion distance in this later microstructure is much lower, which
makes its simulation more sensitive to errors in the discretisation
of the aggregate boundaries. The results presented here have been
rescaled so that the box has a side length of 1. The geometries used
are illustrated in Fig. 1.

The phase fractions as well as the essential parameters of the
geometries are reported in Table 1. All microstructures have simi-
lar phase ratios. The concrete has an aggregate volume fraction of
approximately 40%, indicating that approximately only half the
volume of aggregates which would have been present in a real con-
crete are represented. The same is true for the mortar: a complete
microstructure would have a volume fraction around 65%. How-
ever, Concrete and mortar are not 2-phase materials, and the inter-
face transition zone as well as the macro-pores have been shown to
affect the mechanical properties of the composite. These are not
considered in this study which focuses on the properties of the
numerical tools described. These results can be nonetheless ex-
tended to more complex, multi-phase materials which more clo-
sely correspond to the real ones.

As well as testing the effect of complex geometries on numeri-
cal approximations, the benchmark is designed to assess how the
various methods behave when the phase contrast between the
physical properties of the inclusions and the matrix is high. The
relative properties are reported in Table 2. The moderate contrast
in the elastic case corresponds roughly to real concrete, whereas
the high case has been chosen to anticipate the needs of creep
homogenisation [21]. The thermal contrasts cover an extreme
range of physically plausible values.



Fig. 1. Illustration of the four microstructures used in the benchmark: the single sphere, the single octahedron, the prediodic concrete and the mortar cube.

Table 1
Essential phase information about the microstructures. fi the inclusion fraction, £min

the minimum diameter, £max the maximum diameter and dmin the minimum inter-
inclusion distance.

# Inc. fi £min £max dmin

S 1 0.300 0.620 –
O 1 0.100 0.837 –
B11 2024 0.402 0.043 0.167 1.14 � 10�3

B3200 3200 0.361 0.036 0.125 2.17 � 10�7

Table 2
Relative physical properties of the matrix and inclusions, Ei and Em the Young’s
moduli of the inclusion and matrix respectively; similarly m the Poisson ratio and k the
conductivity.

Mechanical Thermal

Ei/Em mi mm ki/km

Low contrast 10�8 0.2 0.2 10�2

Moderate 3 0.4 0.1 –
High contrast 102 0.2 0.2 102
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The very low stiffness (10�8) simulates pores rather than inclu-
sions and can be considered to demonstrate the abilities of the var-
ious algorithms to deal with foam-like structures. Furthermore,
there are effectively pores in the microstructure of concrete, and
the test of the methods with such a large void fraction can be seen
as validation for the establishment of a homogenised model of
paste and pores.

Two types of boundary conditions are tested, Dirichlet and Neu-
mann (Fig. 2). In mechanical simulations, either a homogeneous
displacement or a homogeneous stress was applied to the compu-
tational volumes along the first axis. Similarly, in the thermal
cases, a homogeneous temperature gradient and homogeneous
heat flux were applied. As those boundary conditions are inappli-
cable for FFT solvers, only periodic boundary conditions were ap-
plied in the latter case.

3. Numerical methods

3.1. FEM baseline

The baseline results were obtained using CAST3M
1 The mesh was

generated using the tools provided by the SALOME
2 platform, which

was used previously to generate cement microstructures [22]. The
mesh properties are reported in Table 3. The meshes generated using
these methods are conforming: the element faces are constrained to
1 http://www-cast3m.cea.fr. This finite element platform is developed and main-
tained at the CEA.

2 http://www.salome-platform.org.
have their vertices lie on the inclusion faces. The mechanical calcu-
lations were performed using CAST3M, which employs a parallel Kry-
lov solver. The larger meshes took up to 10 h to converge on a
workstation. This illustrates the need to develop efficient numerical
methods for the calculation of apparent properties as a straight finite
element strategy is very costly. Coarser meshes cannot be obtained
as there is a constraint on the number of nodes used to represent
a sphere.

Mesh sensitivity analysis was then performed using the SYRTHES
3

[23,24] code. The mesh was refined twice using a splitting strategy,
leading to a very large mesh of 1.496 billion elements (the size of the
geometry mesh file handled by SYRTHES is around 108 Gb). The ther-
mal problem was then solved for each successive refinement. This
showed that the baseline obtained from the finite element calcula-
tions is relatively close to the final values (Table 4).
3.2. Heuristic meshing and FEM

AMIE has been developed as a generic FEM/XFEM platform, and was
designed to model concrete at the microstructure level [25,17,26].
The mesher used does not enforce strict geometric conformance,
but rather is designed to generate a mesh which is good enough
assuming the following assumptions are true:

1. The density of sampling points is homogeneous throughout the
mesh.

2. Exact geometric representation is not required.

These assumptions are reasonable for concrete, as the phase
contrast is moderate—but this is not true in all the benchmark test
presented in this work—and therefore similar mesh density is re-
quired in aggregates and in paste, and microstructures are not ex-
act but specified as particle size distributions. The node
distribution on each sphere surface is computed for each sphere
individually:

1. points are placed at random on the sphere surface,
2. they are given an acceleration based on their proximity to all

other points,
3. all points are displaced and re-projected on the sphere surface,

and
4. a specified number of iterations of this process are effected

The result of this algorithm is a very homogeneous point den-
sity, which makes the best use of the nodes available for discreti-
sation. The mesher integration is also used to accelerate the
computing of damage [27].
3 From EDF R&D.

http://www-cast3m.cea.fr
http://www.salome-platform.org


Linearly varying x 
or free to slide on the plane

Blocked along x Imposed max displacement
or force

Fig. 2. The boundary conditions are established by restricting the x displacement on the bottom plane, by imposing planar displacements on the sides. In the case of
homogeneous displacement linearly varying x displacements are further imposed and in the case of homogeneous force, it is applied on the plane opposite to the bottom.

Table 3
Number of elements in the conforming finite element meshes used for the mechanical
tests.

Sphere Octahedron B11 concrete mortar
Millions of elements

0.732 1.12 16.1 10.1

Table 4
Mesh sensitivity around the baseline meshes, for the diffusion problems, on the B11
morphology.

Elements (�106) 23.4 187 1496
Cores 8 64 256

keff 6.0671 5.9424 5.8963
Time (s) 174 1380 4232

4 C.F. Dunant et al. / Advances in Engineering Software 58 (2013) 1–12
Each geometric feature of the mesh is individually sampled.
Then, the nodes present in overlapping geometries are removed.
Finally, the node set is given as an input to a Delaunay mesher.
As the meshed elements resulting from this procedure are not nec-
essarily fully contained in a single feature, their mechanical or
transport properties are determined by the location of their cen-
tres. A better homogenisation scheme could improve the results,
but has not been implemented. The benefit of introducing such a
scheme can be inferred from the BENHUR approach described below.

As the mesh density is fixed, smaller features may not be repre-
sented. The heuristic however ensures that the phase content re-
mains close to the specification. This is because the attribution of
phase properties to elements behaves like random point sampling
inside the volume. If smaller features are known to be important
and need explicit representation, this can be done using XFEMs.
Fig. 3. l-XFEM method principle illustrated in a simple 2D case with three inclusions
intersecting an element.
3.3. XFEM/levelset method

The XFEM (Extended Finite Element Method) is a versatile meth-
od to accurately describe complex interfaces in non-conforming
(possibly regular) meshes. In the context of the present problem,
meshing 3D complex interfaces induces high computational costs.
In contrast, the XFEM [28–32] is based on the enrichment of the fi-
nite element approximation with additional functions that model
interfaces or singularities independently of the background mesh.
The method has been successfully applied for the homogenization
of microstructures [31]. Nevertheless, in the case of high volume
fractions and nearby inclusions, it has been shown that the classi-
cal XFEM/level-set method induces several artefacts, leading to a low
convergence of both local and effective fields with respect to the
mesh size [33]. In the present paper, we use a modified version
of XFEM called l-XFEM, which can handle the complex microstruc-
tures related to the benchmark test cases geometries [33]. In l-
XFEM, each inclusion is associated with a dedicated level-set func-
tion (cf. Fig. 3). The l-XFEM displacement approximation is given
below as a sum of FEM and XFEM terms:
uhðxÞ ¼
X

i2S
NiðxÞui þ

XNint

k

X

j2Sek

NjðxÞwkð/kðxÞÞak
j ð1Þ
where ak
j are nodal unknowns, the nodal set Sek is defined as

Sek ¼ fjjj 2S;xj \ Ck – 0g and wk(/k(x)) is an enrichment function
constructed via the level-set functions /k of inclusion k with bound-
ary Ck. The general level-set function /k takes the following form:
Ck ¼ fx 2 Rdj/kðxÞ ¼ 0g ð2Þ

In the case of spherical inclusions, the level-set function takes
the form:
/kðxÞ kx� xk
ck � rk

� �
ð3Þ

And the enrichment function wk(x) can be chosen such as:
wkðxÞ ¼
X

i

j/k
i jNiðxÞ �

X

i

/k
i NiðxÞ

�����

����� ð4Þ

This enriched approximation eliminates all the numerical arte-
facts exhibited for nearby inclusions in the classical XFEM/level-set
method.



Fig. 4. BENHUR method principle illustrated for a simple 2D mesh with four inclusions.
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3.4. Fuzzy projection of the microstructure on meshes or regular grids

3.4.1. Benhur Preprocessor
BENHUR is a preprocessor used to attribute homogenised proper-

ties to elements lying across inclusions and matrix [34]. It is used
to improve the results obtained on meshes which are not con-
strained to follow the geometry of the elements. this treatment a
practical approach when used in conjunction with numerical
methods such as FFT solvers and finite differences which are very
efficient but require Cartesian grids.

The volume fraction (fi, resp. fm) of each phase in elements
where overlaps occur is estimated statistically using a large num-
ber of test points. The behaviour associated to each element is then
derived from a number of possible homogenisation procedures (as
illustrated in Fig. 4). The procedures implemented and tested for
the purpose of this benchmark are (p is the physical property
considered):

� Hill inf: p = min (pi, pm).
� Hill sup: p = max (pi, pm).
� Voigt: p = fipi + (1 � fi)pm.
� Reuss: p = 1/(fi/pi + (1 � fi)/pm).
� ‘‘FFT’’ p = pi if fi > 0.5, p = pm otherwise.

The ‘‘FFT’’ homogenisation method is called that way because it is
the default method for FFT solvers. BENHUR was used in the context
of this benchmark with an FEM solver, an FFT solver and a finite dif-
ference grid. Here, we test the combination of preprocessor and
numerical discretisation.
3.4.2. Solvers used in conjunction with BENHUR
The FFT method was originally proposed by Moulinec and Su-

quet [35], and the version used for this benchmark is the acceler-
ated scheme augmented Lagrangian as described by Moulinec and
colleagues [36]. The convergence of this method is strongly depen-
dent on a reference elastic tensor. However this tensor is not very
sensitive to mesh refinement. Therefore, it is optimised for a coarse
mesh of 643 voxels. As a verification, the alternative discretisation
of the Green function proposed by Willot and Pellegrini has also
been used to compute the effective properties of the concrete
microstructure [37]. No significant difference in convergence prop-
erties was observed. The solver used was morph-hom.4 Problems
with up to 10243 voxels were solved using a 12-cores 2.7 GHz Xeon
computer with 96 GB of RAM. A seven node cluster was used to obtain
further results with 21843 and 22683 voxels.

Cartesian grids are also suitable for computations using finite
difference or finite volumes schemes. Such schemes are more
memory-efficient than finite elements and are suitable for trans-
port problems. An implicit central difference scheme was imple-
4 By MINES-PARISTECH.
mented, leading to a 7-band sparse matrix. This well-structured
matrix could then be solved efficiently using a incomplete-Chole-
sky preconditioned conjugate gradient method. This highlights a
central advantage of the BENHUR method, which it owes to its appli-
cability to structured grids. In the case of finite volume method the
BENHUR preprocessor has been used to determine the property of the
cell centred scheme and then solved with a multi-grid approach.

To provide an overview of the different methods, their essential
features have been summarised in Table 5.
4. Results and discussion

4.1. Results

The apparent properties obtained as a function of the numerical
method and mesh fineness are plotted in Figs. 5 and 6. On the y-
axis is the absolute value of the apparent property, and on the x-
axis is h the average characteristic length of the elements. The
bounds on the y-axis go from 50% to the final value of the FFT com-
putations to 200% when possible. Thus, all the graphs lie within
comparable bounds in order to make the comparison of the meth-
ods possible.

A number of effects are visible on these graphs. The first visible
effect is that when inclusions have large values of their mechanical
or thermal properties relative to the matrix this results in larger
divergence of the simulated values for coarse meshes. This effect
is visible both in the thermal and the mechanical simulations.
Notably, there is a larger divergence in the conduction and
mechanical cases for contrasts of 102 than when the contrast is
10�2 or 10�8. Fig. 7 highlights the similarity of the contrast = 102

behaviour in the thermal and mechanical simulations. The second
effect is that complex geometries cause larger divergences in
coarse meshes. Indeed, the error for the B11 and B3200 cases are
significantly larger than in the octahedron and sphere benchmarks.
The third effect is that numerical methods based on Cartesian grids
are stiffer than methods using conforming meshes. Both the FFT and
the XFEM approach seem to converge towards larger apparent val-
ues than CAST3M or AMIE.

Another remarkable result is that the apparent property does
not converge to the same value independent of the numerical
method. This goes against physics and it seems that due to the spe-
cific layout of the mesh used, a bias is introduced. As AMIE does not
mesh the smaller inclusions explicitly, the resulting mesh can be
stiffer of softer depending on where the elements lie with respect
to the microstructure geometry. The quadratic AMIE meshes are also
softer as the intermediate points are projected on the surfaces of
the inclusions. This reduces considerably the geometrical error
when the microstructural boundaries are curved; however, it mod-
ifies slightly the phase fraction compared to CAST3M.

In most cases, the results from the Neumann and Dirichlet
boundary conditions define the upper and lower bounds for the re-
sults obtained with periodic conditions. This is however not the



Table 5
Overview of the different methods and how they differ in terms of behaviour attribution: per elements or per Gauß point, whether the behaviours are taken from phases presents
or computed as mixtures; the kind of elements used; the kind of mesh used.

Method Boundary conditions Mesh type Behaviour attribution Choice of shape functions

CAST3M Dirichlet/Neumann Conforming Element location – lin. Lagrangian

AMIE Dirichlet/Neumann Conforminga Element location – lin. Lagrangian
– quad. Lagrangian

l-XFEM Dirichlet/Neumann Cartesian Gauß points location – lin. Lagrangian
– enriched

BENHUR + FV Dirichlet/Neumann Cartesian hom. mixture from feature overlap – lin. Lagrangian

FFT Periodic Cartesian Largest featureoverlap FFT

BENHUR-FFT Periodic Cartesian Hom. mixture from feature overlap FFT

a When mesh density allows it.

Fig. 5. Apparent mechanical properties (C1111) of the different geometries modelled. On the x-axis is h, the characteristic element size.
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case in the B3200, thermal contrast = 0.01 case, nor in the B11 and
B3200 mechanical contrast = 10�8 cases. In these cases, the large
number of soft inclusions bias the results from the FFT which is sig-
nificantly softer than it should be. Indeed, in these cases, values are
approximated from below. This is probably due to the fact that
many elements have a phase content of more than 50% inclusion
and therefore have the behaviour of the inclusion which results
in a very soft mesh. Finally, when comparing the results from
Dirichlet and Neumann boundary conditions, the results are nota-
bly closer in the B3200 compared to B11. This is probably due to



Fig. 6. Apparent thermal properties (k11) of the different geometries modelled. On the x-axis is h, the characteristic element size.
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the heterogeneity of the microstructure at the boundaries in the
B11 case: large phase contrasts on the surfaces where stresses
are applied result in larger distortions.
The effect of the stress concentrators in the octahedron case are
particularly visible: as the discretised geometry produced by AMIE

has sharp edges, large stresses or temperature gradient are in-



Fig. 7. Outlined behaviour of the various methods. The values of the apparent properties have been normalised to the final value obtained with FFT. This figure highlights the
dispersion of the results as a function of geometry and contrast. The first contrast = 102 column is thermal and the second mechanical. On the x-axis is h, the characteristic
element size.
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duced. The apparent properties become then significantly larger in
the contrast = 100 case.

4.2. Error minimisation and convergence

The benchmark proposed in the article helped identify which
numerical strategies best alleviate different error types. The first
cause of error is the mis-representation of geometry. Finite ele-
ment meshing with conforming meshes and linear elements al-
ways yield a lower inclusion fraction compared to the input
geometry if it is convex and curved. This is because the curved
external boundaries of inclusions are formed by tesselating these
surfaces with triangles. The geometry-based error grows in the
case of smaller inclusions and small inter-inclusion distance, repre-
sented by fewer elements. For a fixed number of discretisation
points, representing these inclusions with a very small number of
nodes is preferable to not representing them at all. Even when
the inclusions are not meshed, giving some elements the behaviour
of the inclusion causes the phase fraction to be better approxi-
mated. The l-XFEM produces an always better representation of
geometry, although a very coarse Cartesian base grid will yield a
somewhat imprecise description of the geometry, due to the multi-
ple level-set approximation. BENHUR hardens or softens the elements
overlapping phases. The choice of the homogenisation technique
used to determine the inter-phase elements must be done as a
function of the problem. In general however, the Voigt and Reuss
methods seem to be the better choices and converge significantly
faster than those based on the Hill bounds.

A second type of error comes from insufficient element density
in regions where large gradients need to be captured. The FEM pro-
vides the most control to limit this error, using appropriate heuris-
tics for mesh density. Unfortunately, this is at the cost of larger
problems. The XFEM method is very sensitive to this kind of errors,
as it uses an underlying Cartesian grid. The order of the elements
of that grid limits the gradients that can be captured. Thus,
although the error is initially very low, even for very coarse
meshes, the convergence is slow, as further improvement only
come from the finer discretisation of the problem. Furthermore,
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the number of degrees of freedom per node is significantly larger
than in the case of the other methods.

The third type of error, which is very important in conduction
problems is the connectivity error. Artificial connections between
inclusions can be formed due to meshing errors. When these errors
dominate, the l-XFEM is the most appropriate tool, as it can elimi-
nate them completely. AMIE’s meshing heuristic also limits these er-
rors, at the cost of making an error on the inclusion fraction. BENHUR

approximates connections which have not been meshed by using
elements whose properties have been obtained through a local
homogenisation rule. Whether the bulk of the error comes from
artificial connectivity or from surface approximations depends on
the scheme chosen.

The convergence behaviour of the various numerical methods is
plotted in Figs. 8 and 9. The value which is plotted is the relative
error within each series; the error is computed as (v the apparent
property):

�i ¼
v i � v finest

v finest

����
���� ð5Þ
Fig. 8. The apparent relative error for each series is plotted. These are mechanical probl
values, the slope cannot be inferred. On the x-axis is h, the characteristic element size.
The error cannot be absolute as the ‘‘converged’’ value is not
known for all series, and in any case, can be different depending
on the numerical scheme used. However, the relative error mea-
sure can be usefully used to assess the asymptotic convergence
rate of the different methods.

In general, these observations show that there are two compo-
nents to the asymptotic behaviour of the numerical value of the er-
ror e.

e ¼ COðhnÞ ð6Þ

One component (C) is the part which comes essentially from the
mis-representation of geometry, notably in the case of the concrete
and mortar microstructures, the connections between pores or
inclusions. As this is always correct in the case of l-XFEM, the initial
error is low. Methods using Cartesian grids have a high C, but can
compensate by using significantly smaller elements as the memory
cost of storing the mesh is much lower. The other component of the
error (hn) comes from the approximation of the solution due to the
choice of fields and the size of the elements h. n is the order of the
convergence. When the results are computed on Cartesian grids,
ems. When a series has a single result, it is not plotted. When a series has only two



Fig. 9. The apparent relative error for each series is plotted. These are steady-state diffusion problems. When a series has a single result, it is not plotted. Series with single
results were not plotted. On the x-axis is h, the characteristic element size.
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large gradients of stresses of concentration cannot be well captured
as fields vary linearly or quadratically over elements which are not
oriented in the direction of the maximum gradient. The methods
using conforming fields, CAST3M and AMIE have the higher convergence
slope due to the closer-to-optimal placements of the elements. AMIE

has the highest convergence rate as the mesh simultaneously con-
verges to the exact geometry as well as becoming finer.
4.3. Estimation of effective properties

The strengthening theorem [38] explains why finite element-
based approaches overestimate the apparent mechanical or ther-
mal properties, this is because the choice of shape functions in fi-
nite elements always yields a solution with lower elastic energy
than the solution corresponding to the real displacement field



Table 6
Overview of the advantages and flaws of the methods presented in this work. Heuristic meshing improves on FEM by allowing coarse meshes, which could not have been generated
had conformance been required. XFEM improves over FEM by having an always perfect representation of geometry—provided it has no sharp angles. BENHUR can be used in
conjunction with very fast solvers, but requires the choice of appropriate homogenisation schemes for each problem.

Conforming FEM AMIE l-XFEM BENHUR + FEM BENHUR + FFT

Coarse mesh precision – + ++ �/+ �/+
Medium mesh precision – ++ +++ +/++ +/++
Fine mesh precision +++ +++ +++ ++/+++ +++
Max precision ++ ++ ++ ++ +++
Speed + ++ + ++ +++
Genericness +++ +++ ++ – –
Sharp geometries +++ +++ – + +
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[39]. Only the BENHUR preprocessor will underestimate properties in
certain cases, due to sampling or from the local homogenisation
producing too-soft elements. In all cases convergence to a final
apparent property was observed, but excessive errors for rough
discretisations and high contrasts were observed: up to 400% in
the case of the concrete-like materials, B11 and B3200. This con-
firms the observation which prompted the development of the
techniques described in this paper, namely that microstructural
simulation, even in the case of linear diffusion or elasticity, is a
hard numerical problem in the case of complex geometry.

As all methods need fine grids to provide adequate apparent
properties, the Cartesian grid based methods with the BENHUR pre-
processor have an advantage as they yield matrices which can be
stored very effectively—or in the case of finite differences, not
stored at all. However, they require the choice of an appropriate lo-
cal homogenisation scheme, which is not easy to pick: significant
differences were observed in the final values depending on the
choice of scheme. Table 6 gives a summary of the strengths and
weaknesses of each method. In this table the ‘‘genericness’’ charac-
ter describes how much this method is directly applicable to differ-
ent problems or whether it needs application-specific tweaks.
5. Conclusion

The methods presented in this paper do not form an exhaustive
list of possibilities, and more methods can be found published in
the literature. However, they represent varied attempts at alleviat-
ing the various sources of error inherent in the simulation of recon-
structed microstructures, and effectively span the range of
methods which are commonly encountered. Therefore, taken to-
gether, they can be used to formulate recommendations about
what is the best numerical strategy to apply, depending on the
type of numerical difficulties encountered. Table 6 provides a qual-
itative summary of the advantages and disadvantages of the meth-
ods. The methodology described in this paper that was used to
compare them was found useful and highlighted strengths and
weaknesses which were not obvious.

In the case of complex microstructures where the main diffi-
culty consists in capturing the effects cased by closely packed par-
ticles, where the error will mostly come from artificial contacts,
XFEM is a good candidate at low number of elements. For larger
numbers of elements, relaxed meshing will allow the production
of meshes which give good approximations at moderate comput-
ing costs. If yet more computing power available, good estimates
can be produced using BENHUR or the classical finite element meth-
od. If the constituents of the geometry are not closely packed but
well-separated, BENHUR gives good approximations at low mesh
densities. In the case of simple geometries with well-defined edges,
the classical finite element method should be preferred, as it gives
very good results, even for very coarse meshes. In the case of sim-
ple geometries with curved surfaces, quadratic elements should be
used as they significantly reduce the geometrical error. Finally,-
when an FFT solver can be used, very good approximations can be
had in all cases as extremely fine meshes can be considered. In
the latter case, preprocessing using BENHUR can improve the results,
provided that enough is known that an appropriate homogenisa-
tion scheme can be chosen.

The significant differences observed between the methods show
that for complex geometries, reliably obtaining apparent linear
properties for high phase contrasts is a difficult problem which
merits further attention. The results are shown here for simplified
2-phase materials, but the wide range of phase contrasts described
makes them applicable to more realistic representation of cemen-
titious composites.
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