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Abstract The effective response of an ideal random composite, the Boolean model of
spheres, with a nonlinear powerlaw matrix, is investigated. Nonlinearity is parametrized
by the law exponent 0 < n < 1, with the values n = 1 corresponding to a linear-
elastic matrix and n = 0 to a strongly nonlinear elastic matrix. To strengthen the effect
of the microstructure, inclusions are either quasi-rigid or porous, whereas the matrix
is compressible or incompressible. Full-fields solutions are computed numerically using
Fourier methods, for varying inclusion volume fractions and nonlinearity exponent. Next,
we consider the effect of a two-scale dispersion of pores and rigid inclusions in the context
of a nonlinear matrix.

21.1 Constitutive law and loading conditions

This work is concerned by the mechanical behavior of a Boolean model of porous or
quasi-rigid spheres with volume fraction f embedded in a matrix. In the matrix, the
stress tensor o obeys the following “powerlaw” behavior:

2
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where o/, & and €eq are the deviatoric stress and strain tensors and the Von Mises
equivalent strain:
oij = 0ij—ombij, € =¢ij —embij, Em =¢€ii/3, om =0i/3,
€eq = (2/3)e" 1 €', 0eq =4/(3/2)0’ : 0/, (21.2)

and §;; is the Kronecker symbol. When n = 0, the tangent elastic moduli is zero whenever
€eq > 0. This law mimics a rigid perfectly-plastic behavior with yield stress ym , assuming
no local unloading occures. In particular, one has geq = yméeg,- In the matrix, we set
ym = 1, and km = 1/3 (compressible material) or xm,m = 1/310% (quasi-incompressible
matrix). In the inclusions, we set ¢ = 0 for pores. Quasi-rigid inclusions are linearly-
elastic with bulk and shear moduli equal to 1/3 103

The nonlinear conducting behavior in the matrix reads:

Ji(x) = xm [E(x)|" " E; (%), (21.3)
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where J is the current field, E the electric field and where the nonlinear suceptibility xm
is equal to 1. In insulating inclusions, we set J = 0, and, in highly-conducting inclusions,
J = E with x; = 103.

In elasticity, the equilibrium problem with periodic boundary conditions is solved
using a FFT-based scheme (Michel, Moulinec, and Suquet 2000). The conductivity prob-
lem is solved using the same augmented-Lagrangian technique, applied to conductiv-
ity (Michel, Moulinec, and Suquet 2001). To achieve convergence, the constitutive law
(21.1), which presents an infinite slope at the origin when n # 1, is regularized as follows.
For elasticity we introduce a linear-elastic regime and enforce:

Oeq = min(3/t€eq7ym8§q),
with g = 103 » 1. Thus, the second equation in (21.1) is replaced by:
2ym
a’zmin<2 ,7>5/ X),
(" (x)

Likewise, we set, in the conductivity problem:

) E
J = min(x1|E|, Xm|E‘n)E7

where x1 = 103.

Figure 21.1: FFT maps: 2D section of the Von Mises equivalent deviatoric strain e.q. (a)
strongly nonlinear matrix with porous inclusions of volume fraction f = 5% (b) strongly
nonlinear matrix with quasi-rigid inclusions of volume fraction f = 60%. Hydrostatic strain
loading {g,,» > 0 is applied. Highest strain values in yellow and white, lowest in black. The
matrix is incompressible in (a), and compressible in (b).

In the following we apply two types of strain loading conditions, of the form {(e;;) =
tg;; where t = 1 is a loading parameter and &;; is the loading direction (here {-) denotes
a spatial average). The first loading type is a hydrostatic strain loading &; = ;5. We
define the effective “bulk modulus” ko by the relation:

ko = {om)/(3em)™), (21.4)

with {(€m) = 1 in the computations carried out in the present work. The second loading
condition is a shear strain loading €12 = €21 = 1 with the other strain components equal
to zero. The effective yield stress yo is defined by:

{0)eq = Yol&eq; (21.5)

In conductivity, we apply a macroscopic applied electric field (E;) = 1 and define the
effective susceptibility xo by:

[KID] = xo[KEH[™. (21.6)
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21.2 FFT results

21.2.1 Boolean microstructure

In the numerical computations that follow, we discretize the Boolean model of spheres
over regular grids of points of volume 5122 voxels. The spheres diameter is 20 voxels
and the intensity of the Poisson point process in the Boolean model is chosen so as to
guarantee, on average, a sphere volume fraction equal to f. Examples of field maps for
a strongly nonlinear matrix (n = 0) are shown in Fig. (21.1).

FFT results for the effective bulk modulus and yield stress of a rigly-reinforced
Boolean model of spheres are shown in Fig. (21.2) as a function of the volume frac-
tion of rigid particles, for various exponents n. The effective bulk modulus decreases
when the nonlinearity increases. This effect is weak for small density of spheres and more
pronounced after the percolation threshold, when the density of rigid particles typically
lies in the range [0.7;0.9], highlighting a strong effect of nonlinearity in this regime.

In the semi-log scale representation of Fig. (21.2b), this situation appears to be
reversed for the yield stress, which is sensitive to the nonlinearity exponent when the
density of spheres is less than about 0.4 and low afterwards. In contrast to the data
presented for the bulk modulus, the effective yield stress presents, in the dilute limit, a
slope (first-order correction) which vary with n. More precisely, the correction deacreases
with n, and approaches a zero-slope when n goes to 0, i.e. a weak effect of rigid particles
when = 0. Limit analysis predicts that the effective yield stress yg equals y, if there
exists a planar surface entirely contained in the matrix. In periodic media, this leads to
Yo = Ym in a large domain (Idiart et al. 2009). This is not the case in random media,
where such surfaces do not exist.
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Figure 21.2: Normalized effective bulk modulus kg/k; (a) and normalized yield stress oo/ym
(b-c) for a Boolean model of quasi-rigid spheres of volume fraction f, for varying powerlaw
exponent n = 0, ..., 1 in the matrix. The matrix is compressible with bulk modulus K., =1
(a-b) or quasi-incompressible (., = 10%) (c).

In the porous case, the effective yield stress is quite insensitive to the nonlinearity
exponent (Fig. 21.3c, 21.3d). The effective bulk modulus however is much weaker for
strongly nonlinear matrices than with a linear matrix. This sensitivity is exacerbated
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when the matrix is incompressible (Fig. 21.3b).

Results obtained for conductivity are shown in Fig. (21.4). The effective conductivity
is not a monotonic fucntion of n at fixed f. In the insulating case, it takes its maximum
value at about n ~ 0.7 for most sphere volume fraction.
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Figure 21.3: Effective bulk modulus ko (a-b) and yield stress yo (c-d) of a Boolean model of
porous spheres as a function of the sphere volume fraction f, for varying powerlaw exponent
n = 0, ..., 1 in the matrix. (a), (c¢): Compressible matrix. (b), (d): Quasi-incompressible
matrix.

21.2.2 Two-scale microstructures

Consider a Cox-Boolean model made of aggregates of spheres, as introduced in another
study (Willot and Jeulin 2011). This model is simulated using (i) a Boolean model of
spheres of large radius and (ii) a Boolean model of spheres with smaller radius which
lie inside the larger spheres. We assume that the volume fraction of the largest spheres
in the whole domain is equal to the volume fraction of the small spheres relative to
the larger spheres. After this process, we keep the small spheres only. Assuming scale
separation between the smallest and largest spheres, this two-scales material depends on
one parameter only, the sphere volume fraction, like the homogeneous Boolean model.
However, contrary to the one-scale model, the spheres in the Cox-Boolean model are
aggregated into clusters, whose size is parametrized by the radius of the largest spheres.
In the numerical computations that follow, we discretize the smallest and largest spheres
using diameters of 5 and 50 voxels, and the two-scales Boolean model are discretized on
grids of 5123 voxels as vefore. For simplicity, only the strongly nonlinear (n = 0) and
linear regimes (n = 1) are considered.

In a previous study (Willot and Jeulin 2011) devoted to the linear-elastic regime,
it has been shown that the non-uniform dispersion of spheres greatly increases the elas-
tic properties at fixed volume fraction of inclusions, when rigid inclusions are considered.
The corresponding results in the nonlinear regime are shown in Fig. (21.5b). For strongly
nonlinear matrices (n = 0) a reinforcement effect due to the non-uniform spatial disper-
sion is also observed, when f < 0.3. This is not so at higher rigid-inclusions volume
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Figure 21.4: Normalized effective conductivity xo/xm and xo/x: of a Boolean model of highly-
conducting (a) and insulating (b) spheres, as a function of the sphere volume fraction f, for

varying powerlaw exponent n = 0, ..., 1 in the matrix.
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Figure 21.5: Effective bulk modulus k¢ in the one-scale and “iterated” two-scales porous and
rigidly-reinforced Boolean models, as a function of the sphere volume fraction f, at varying
powerlaw exponent n = 0, ..., 1 in the matrix.
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fractions. In contrast to the linear case, our data suggests a weakening effect of the
non-uniform dispersion.

The study mentioned previously (Willot and Jeulin 2011) has shown that, in the
linear regime, pores have a stronger effect when they are aggregated into clusters. This
property holds in for strongly nonlinear matrices (n = 0) when f < 0.3 Fig. (21.5a). The
weakening of the macrscopic behavior due to a non-uniform dispersion of pores has been
observed previously, e.g. in (Bilger et al. 2005). When f > 0.3, however, the effective bulk
modulus for the one-scale model is lower than that in the two scales model (Fig. 21.5a).

21.3 Conclusion

The reinforcement and weakening effect of a population of pores or quasi-rigid inclusions
has been estimated numerically, in the context of a matrix with powerlaw nonlinear
response. Nonlinearity has an important weakening effect on the effective bulk modulus in
rigidly-reinforced media with particles volume fraction beyond the percolation threshold.
However, the most dramatic effect of nonlinearity is observed in porous media with quasi-
incompressible matrix, and for small volume fraction of pores. This is in contrast with
results obtained for the effective yield stress which is, in porous media, weakly-sensitive
to the nonlinearity exponent, except possibly in the dilute regime.

Computations have also been carried out on a two-scale Cox-Boolean material with
non-uniform particles dispersion. In the linear regime, a reinforcement effect of the two-
scale dispersion is observed in the rigid case. This property does not hold for strongly
nonlinear matrices with exponent n = 0, in particular at high volume fractions of rigid
particles.
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