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2.1. Introduction 

The fine structure of metals, composites and other materials, examined under a 
microscope, depends on the scale at which it is viewed. A typical example is 
concrete, which at smaller scales consists of mortar, aggregates and cement 
(Stroeven 2000). In most cases, such a microstructure appears as a random 
arrangement, in space, of “phases”, namely of its different constituents at the scale 
under consideration. As noted by Matheron (1967), behind the multiplicity of shapes 
and sizes, and the variety of network of interstices between aggregates and clusters 
of particles, these random arrangements also have a repetitive character (see Figure 
2.1). Random set theory, whose modern developments originate in the works of 
Choquet (1954), Matheron (1965) and Kendall (1974), aims to quantify and simulate 
the morphology of heterogeneous media using probabilistic methods. Reconsidering 
the example of concrete, the forms of aggregates present in such materials are 
always different from one another. However, they present specific characteristics 
such as their granulometry (Escoda et al. 2015). It is therefore natural to study 
whether it is possible, by means of a limited number of “morphological” descriptors, 
to model accurately a given microstructure, seen as the realization of a random set 
(Molchanov 2005), with the aim of predicting its mechanical properties, in particular 
by homogenization (Milton 2002). 
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Figure 2.1. “Biloba” concrete core, according to Escoda (2012) (source: EDF).  
For a color version of this figure, see www.iste.co.uk/gogu/uncertainties.zip 

The first question, addressed in this chapter, is the subject of integral geometry 
(or stochastic geometry) developed by Matheron (1975) and Kendall (1974), among 
others. Two main problems arise. First, the development of morphological criteria to 
quantify the shape of objects and their distribution in space. These criteria make use 
of image transformations, which are most often nonlinear operators derived from 
mathematical morphology (Matheron and Serra 1982). These methods apply to 
random sets or functions that can be very general, for example tensor-valued ones 
(Angulo 2012), such as a strain or stress field. The second problem is the simulation 
of random microstructures representative of real structures based on morphological 
criteria. Probabilistic models of structures, some of which relying on analytical 
tools, provide means to define and simulate representative random realizations of 
real microstructures. Among numerous examples, the following works can be cited: 
Greco et al. (1979), Jeulin et al. (1995), Redenbach et al. (2011) and Bortolussi  
et al. (2018). 

This chapter is organized as follows. Section 2.2 is dedicated to the main 
theoretical and numerical tools for characterizing microstructures from two- or 
three-dimensional images. Random point processes are introduced in section 2.3, 
Boolean models in section 2.4 and repulsion models in section 2.5. The main 
random partition models are introduced in section 2.6 and random structures from 
Gaussian fields are briefly discussed in section 2.7. The chapter is concluded by 
section 2.8. 
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2.2. Probabilistic characterization of microstructures 

2.2.1. Random sets 

A random set is a stochastic model whose realizations are sets of d  (where  
d = 2 or 3 is the dimension). For reasons that will be explained later, we are 

interested in closed sets comprised in d . The distribution of a random set is 
completely specified by a probability measure defined on a σ-algebra, that is, a 

space containing d , the empty set, and which is stable by a countless number of 

unions and intersections. This algebra is used to define measures on sets of d . 
These definitions are discussed by Lantuéjoul (2002, Chapter 2). 

A fundamental theoretical tool enabling random-orthogical sets to be 
characterized is the Choquet capacity. It can be written as follows:  

( ) = { }T K P X K∩ ≠ ∅  [2.1] 

where K is a compact set of   and X  a realization of a random set. It satisfies the 
following properties:  

i) 0 ( ) 1T K≤ ≤ for any compact subset K , and ( ) = 0T ∅  ( ) = 1dT  ; 

ii) for ( ) ( )T K T K K ′≤ ∪  all compact subsets K and K′ ; 

iii) if nK  is a sequence of decreasing compact subsets (as inclusion defines it) in 
d  with the limit  , then: 

lim ( ) = ( )n nT K T→∞   

The “hitting functional” T can be seen as a generalization of the cumulative 
distribution function for random sets (Matheron 1975). This interpretation is 
justified by the following theorem (Choquet 1954; Kendall 1974; Matheron 1975): 

THEOREM 2.1.– Let T be a functional defined on the set of compacts subsets   of 
d . Then there exists a single probability measure P defined on the σ-algebra K  

such that: 

( ) = ( )KP T K  

if, and only if,T is a Choquet capacity verifying (i), (ii) and (iii) above. 



4     Mechanical Engineering under Uncertainties 

The σ-algebra K is the smallest σ-algebra containing the closed sets that meet 

the compact subsets of d   

= { : },K F F K K∈ ∩ ≠ ∅ ∈    [2.2] 

where   is the set of the closed subsets of d and   the set of the compacts 
subsets. 

The realizations of the random set are in  , that is, in the closed set. This 
restriction comes from the fact that the functional ( )T K  does not allow 

distinguishing a set from its closure. Note that there exists a dual theory involving 

the open sets of d (Lantuéjoul 2002). However, it is generally preferable to work 
on closures, because they include random point or line processes that are very 
important for a large number of models. 

When restricted to a finite set of points, the functional ( )T K  defines the spatial 

distribution of the random set X . If K  is a finite set of n points:  

1( ,..., ) = { ,1 }n n iT x x P x X i n∈ ≤ ≤  [2.3] 

The spatial distribution does not allow us to fully characterize X . For example, 
if X is itself a finite set of points, it is clear that 0nT ≡ for every 0n ≥ . On the 

other hand, the spatial distribution makes it possible to define a single random set, 
which is a minimizer of ( )T K ; see on this subject the works of Matheron (1975). 

DEFINITION 2.1.– A random set is said to be stationary if its Choquet capacity ( )T K  

is translation invariant of ܭ, that is:  

( ) = ( ), = { ; }x xT K T K K k x k K+ ∈  [2.4] 

Moreover, if the values ( )T K  taken by the functional remain unchanged after a 

rigid body movement of K , including rotations, the random pattern is said to be 
isotropic.  

It is assumed in the following that X is a stationary, ergodic random set. There 
are several definitions of ergodicity in the literature, one of the most general being 
given by Heinrich (1992). This definition, which is somewhat technical, is not 
detailed here. 
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Intuitively, ergodicity implies that the Choquet capacity ( )T K  can be calculated 

from a single realization X  on d and more precisely from the average density of 
the set:  

{  : 0}d
xx K X∈ ∩ ≠  [2.5] 

In such a case, for example, the density of X  (volume or surface area fraction), 
calculated over a sufficiently large domain, is no longer asymptotically a random 
variable. This property is in line with a more operational definition of ergodicity 
proposed by other authors (Lantuéjoul 1991). In practice, the Choquet capacity is 
calculated based on a large-sized realization X  using:  

( ) = { } = { }x xT K P K X P x X K∩ ≠ ∅ ∈ ⊕


 [2.6a] 

= { , , }X K x k x X k K⊗ − ∈ ∈


 [2.6b] 

operators ⊕  and ˇ defining morphological dilation, in this case applied to X  by a 
structuring element ܭ (Serra 1980). The operator ⊕  is the Minkowski addition:  

{ }= ; ,K K x x x K x K′ ′ ′ ′⊕ + ∈ ∈  [2.7] 

Random set theory has been extended by Matheron (1969) to upper or lower 

semicontinuous random functions ( )Z x  ( dx ∈ ). Indeed, if for example ( )Z x is 

upper semicontinuous, the supergraph:  

{( , ) : ( ) }dx z Z x z∈ × ≥   [2.8] 

is a random set in 1d + (Lantuéjoul 2002). 

Tensor (or “spectral”) valued functions require more sophisticated mathematical 
morphology tools (Angulo 2012). Random sets can also be defined on non-ordinary 
topological sets such as point clouds, random trees. These theories are not discussed 
in this chapter. 

2.2.2. Covariance 

In the event that K  is a bipoint, the functional ( )T K  is the covariance of the set 

X .  
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DEFINITION 2.2.– The covariance of the random set X  is the function defined on 
d d×    

( , ) = { , }, , dC x x h P x X x h X x h+ ∈ + ∈ ∈  [2.9] 

When ܺ is stationary, we have ( , ) = ( )C x x h C h+ . The correlation function is 

denoted as ( ) =hρ ( ) / (0)C h C . 

Moreover, it is clear that ( )C h  only depends on the norm of ℎ in the case of an 

isotropic random set. The covariance is estimated from a realization of an ergodic 
stationary set by:  

( ) = { } = ( )h hC h P x X X V X X− −∈ ∩ ∩  [2.10] 

where ( )V ⋅ designates the mean density (area or volume fraction) of the set being 

considered. 

NOTE.– The covariance provides access to statistical information on the set ܺ, in 
particular (Matheron 1975; Lantuéjoul 2002): 

i) (0) = ( )C V X ; 

ii) 2
| | ( ) = (0)lim h C h C→∞ ; 

iii) ( ) = 1 2 (0) ( )cX
C h C C h− + , where cX

C  is the covariance of the complement 

of X .  

The quantity in (i) is the volume or surface fraction of the set X , property (ii) is 
obtained if the two events x X∈  and x h X+ ∈ are asymptotically independent, 
when h → ∞ . This property is valid for an ergodic stationary ensemble. It does not 
hold if, for example, the set X  is periodic (in this case, the covariance is itself a 
periodic function). Finally, property (iii) shows that the covariance of a set and its 
complement can be inferred from one another. 

In addition, the specific area ( = 3d ) or perimeter ( = 2d ) | |X∂  of X  are 

given by:  

1 =0

1 ( )
| |= d

Sd hd

C h
X

h
α

ω −

∂∂ −
∂  [2.11] 
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where the sum is carried out on all the angular sectors of the unit sphere dS  in 

dimension d , and 1dω −  designates the volume of the unit ball of dimension 1d − . 

Therefore, in dimension = 2d  and 3:  

=03

1 ( )
( ) = dV

S h

C h
S X

h
α

π
∂−

∂  [2.12a] 

=02

1 ( )
( ) = d

2S
S h

C h
P X

h
α ∂−

∂  [2.12b] 

VS  designates the specific surface area (surface density of the boundary X) and 

SP  the specific perimeter. Both are expressed in inverse length unit. It should be 

noted that in an isotropic model with ( ) / =C h h∂ ∂ +∞  in = 0h , the specific surface 

area is then infinite (for a fractal object). More precisely, a power law behavior 

( )C h hβ  can be related to the origin when 0h →  ( 0 < < 1β ) with the fractal 

dimension (Hausdorff dimension) of the surface = 3sd β−  (Matheron 1989b). 

The covariance function provides access to other types of information. For 
example, inflection points can reflect the presence of nested structures or clusters, 
the values 2( ) < (0)C h C  of anticorrelation phenomena. The latter appear in particular 

in inclusion matrix-based models in which interpenetration between particles is 
prohibited. 

Other properties relate to the second derivative of the original variogram. It is 
infinite in absolute value when the surface of the random set presents a cusp, with 
finite probability within a bounded domain. In the case of angular points, the second 
derivative is finite. It is finally zero if the surface is regular (Emery and Lantuéjoul 
2011). 

NOTE.– Covariance functions are not arbitrary. In particular, they are definite 
positive or more precisely:  

, =1

( ) 0
n

C x xα β α β
α β

λ λ − ≥  [2.13] 

for any sequence of points xα  and any finite sequence of real numbers αλ  ( = 1α , 

..., ݊). 
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The Bochner theorem shows that the above property is verified if and only if the 
covariance is the Fourier transform of a positive measure (Bochner 1959; Christakos 
1984). In the case of a homogeneous random function ܼሺݔሻ whose autocovariance 
function is written as:  

( ) = [ ( ) ][ ( ) ] , = ( )h Z x Z y Z xχ μ μ μ − −     [2.14] 

It is then showed that (Torquato 2013):  

( ) = d ( ) 0ik r
dk r r eχ χ − ⋅ ≥  [2.15] 

for every ݇, as soon as χ  is integrable, that is: 

d | ( ) |d r rχ ≤ ∞  

NOTE.– The above property applies to random functions. However, it does not make 
it possible to fully characterize functions that are covariances of random sets. A 
counterexample is given by Torquato (2013). 

2.2.3. Granulometry 

Granulometries are defined using a family of operators λΦ  depending on a 

length parameter. The properties of this increasing, anti-extensive and idempotent 
operator were introduced by Matheron (1975). In practice, a convex set K  and a 
family of sets Kλ  ( > 0λ ) obtained by homothety are considered, which are used 
as parameters for the operator Φ .  

In the case of opening granulometry, the operator λΦ  is written as:  

( ) = ( )X X K KλΦ λ⊕  [2.16] 

where ⊖ is the Minkowski subtraction:  

{ }= ; ,K K x x x K x K′ ′ ′ ′− ∈ ∈  [2.17] 

such that λΦ  is an opening through the structuring element K . Similarly, a closing 

can be defined ( ) = ( )X X K KλΦ λ⊕   
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Erosions or dilations by Kλ also define granulometries. In practice, however, 
they are less sensitive to microstructure than openings and closings (Escoda et al. 
2015) and are therefore less frequently used. 

2.2.4. Minkowski functionals 

We examine the set d  of convex compacts subsets of d  and the real-valued 

functionals ( )KΦ  defined in d .  

The following properties are defined: 

DEFINITION 2.3.– The functional φ  defined on d  is: 

– isometry invariant if for any isometry   (translation, rotation, reflection, etc.) 

and compact convex subset K , ( ) = ( )K KΦ Φ ;  

– monotonic for inclusion if 1 2 1 2( ) ( )K K K KΦ Φ⊆ ≤ ; 

– C d-additive if for any pair of convex subsets 1K , 2K  such that 1 2
dK K∪ ∈ , 

1 2 1 2 1 2( ) = ( ) ( ) ( )K K K K K Kφ φ φ φ∪ + − ∩ .  

The following theorem is due to Minkowski: 

THEOREM 2.2.– The isometrically invariant, monotonic and C d-additive functions 
are positive linear combinations of 1d +  functions known as homogeneous 
Minkowki functions of degrees iW , that is verifying d i− :  

> 0 ( ) = ( )d i
i iW K W Kλ λ λ −

 

By convention, Minkowski’s functionals all take the same value in the unit ball 
in dimension ݀. 

NOTE.– Let us take a closer look at the cases = 2d  and = 3d . We have:  

– 0 ( ) =| |W K K  the volume ( = 3d ) or the surface area ( = 2d ) of ܭ;  

– 1( ) =| | /W K K d∂ , where | |K∂  is the length ( = 2d ) or area ( = 3d ) of the 

boundary of K ;  
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– 1( ) = ( ) / 2d dW K Kω γ−  where ( )Kγ  designates the average extension of K . 

If ( , )K vγ  is the extension of K  in the direction ݒ (the length of the projection of 

K on a straight line of direction v ), then:  

d ( , )

( ) =
d

v Sd

v Sd

v K v

K
v

γ
γ

∈

∈




 

– ( ) =d dW K ω  if K ≠ ∅ , and 0 otherwise.  

Thereby, for = 2d : 

1
( ) = | |b K K

π
∂

 

When ݀ = 3, ଶܹ is proportional to the integral of the mean curvature: 

1 2

( ) = d ( )

1 1 1
( ) =

2

K
M K Sm x

m x
R R

∂

 
+ 

 


 [2.18] 

where 1( )R x , 2 ( )R x  are the radii of curvature in x  on the surface of the convex. 

Steiner’s formula can be used to connect the volume of the dilation of a convex 
set K  by a ball (0, )B r  of radius r , knowing the Minkowski functionalities of ܭ. 

THEOREM 2.3.– Let dK ∈   and > 0r . The volume of the dilated set of K by the 
ball of radius r is:  

=0

| (0, ) |= ( )
d

j
j

j

d
K B r W K r

j

 
⊕  

 
  [2.19] 

where 
d

j

 
 
 

 designates the binomial coefficient in d, j. 
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2.2.5. Stereology 

An affine space iA  of dimension <i d  cuts the convex set ܭ into a convex 

subset iA K∩ . An affine space of dimension i  is denoted by i  taken uniformly 

among all those that cut K . The Crofton formula (Hadwiger 1957) gives the 
average of the Minkowski functionals of iA K∩  (where i iA ∈ ) as a function of 

those of K . 

THEOREM 2.4.– The Minkowski functionals ( )i
jW  of the intersection of dK ∈   

with an affine space of dimension <i d  are written as:  

{ }( ) ( )
( ) = , 0 <

( )
i d j ji

ij
A d i i j ii i

W K
E W K A j i

W K

ω ω
ω ω

−

∈ − −
∩ ≤


 [2.20] 

Given that isotropy and stationarity are assumed, these properties allow one to 
calculate the volume of 3D objects based on a two-dimensional slice assumed to be 
representative, or to infer the surface area of these objects from an estimate of the 
perimeter on a slice (Schneider and Weil 2008). 

2.2.6. Linear erosion 

Instead of calculating the Choquet capacity for a compact subset reduced to a bi-
point (or n points), it is now chosen to be applied to a segment L of length h and 
orientation α . This is obtained by linear erosion:  

{ }=  : [0; ]X L X u u h− ∈  [2.21] 

For a stationary set, the moment is defined by linear erosion ( )P h of X using 

the Lebesgues measure of X L :  

( ) =| |= { }P h X L P L X⊂  [2.22] 

The following properties are easily verified:  

– (0) = (0)P C  is the volume (or surface) fraction of the set X ;  
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– the linear erosion moment and the covariance have the same slope at the origin, 
namely (0) = (0)P C′ ′ ; 

– for a fixed angle ,α ( ) ( )C h P h≥ ; 

– at a fixed angle ,α ( )P h is a decreasing function of ℎ;  

– ( ) = 0P ∞ .  

In addition, the opening granulometry of a segment ܮ can be characterized by:  

{ } = ( ) ( ), = ( )P x X L P h hP h X L X L L′∈ − ⊕    [2.23] 

where ( )P h′  is the derivative of ( )P h . 

2.2.7. Representative volume element 

We consider a measure of the volume fraction of an ergodic random set X , 
estimated from a realization in a bounded domain:  

1
= 1 ( )d

| |V X
V

f x x
V   [2.24] 

DEFINITION 2.4.– The integral range of the ergodic random set ܺ is the d-volume 
quantity:  

2

2

( ) (0)
= d

(0) (0)
d d

C h C
A h

C C

−
−  [2.25] 

It is shown that if X  is of finite integral range dA , the variance of the estimates 

Vf  of f varies asymptotically as (Matheron 1989a):  

2
2 1

{( ) } = , | |
| | | |

d
V

A
f f V

V V

σ  
− + → ∞ 

 
   [2.26] 

where the volumes V  are increasing compacts that asymptotically overlap d . 
Furthermore, the above equation provides a good estimate of the variance when 
| | dV A . This relation shows that the volume ܸ behaves as =| | / dn V A volume-

independent domains of integration range. In the case where =dA +∞  that is when 
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the quantity is 2( )C h f−  not infinitely integrable, the asymptotic relation [2.26] is 

no longer valid. This is particularly the case for models containing Poissonian 
varieties of infinite size, in which correlations exist at scales as large as desirable 
(Lantuéjoul 1991; Jeulin 2016). Exact results for the asymptotic behavior of the 
variance of Vf  of some cylinder Boolean structures are given by Willot (2017). For 

three-dimensional Boolean fibrous materials containing large-sized elongated 
particles, for example, two regimes appear. The variance of the estimates Vf  behaves 

as 2/31/ | |V  in a domain h  and as 1/ | |V  when h  , the change of 

regime occurs over the length h ≈   of the fibers. 

Mechanical fields (for example, the strain tensor) can also be associated with an 
integral range; by studying the asymptotic behavior of the average field over 
subvolumes, this average reflecting the apparent properties is (for example, the 
apparent elastic modulus) associated with a finite size volume (Altendorf et al. 
2014). Azzimonti et al. (2013), for example, numerically calculates separate 
exponents for the microstructure and the displacement field (in optics) of a 
repository model. 

2.3. Point processes 

A random point process is defined as a random set of points each realization of 
which is a closed set that contains a finite or countable number of points. In general, 
it is assumed that each realization is locally finite, that is, the number of points 
contained in a compact set is almost surely finite. 

Random point processes are a very rich class of stochastic models. They are 
useful as well for defining models of continuous random sets. For example, a 
straight line in the plane can be represented by an angle, measured with respect to a 
fixed axis, and a positive real, its distance to a fixed point. A process of random 
points in a semi-infinite band [0;2 ]π +×  consequently corresponds to a random 

process of straight lines.  

In the case of a Poisson point process (that will be defined below), a pattern of 
Poissonian lines is obtained (see Figure 2.2(f)). Similarly, a random point process 
can be used as germs for Boolean schemes (see Figures 2.2(a) and (b)) or for a dead-
leaves model (see Figure 2.2(c)) or random partitions (see Figures 2.2(d) and (e)). 
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                                          a)                               b)                             c) 

 
                                         d)                               e)                              f) 

Figure 2.2. Examples of stochastic models derived from random point processes:  
(a and b) Boolean models; (c) dead-leaves model; (d) labeling of a Poisson–Voronoi 
random partition; (e) Johnson–Mehl random partition; (f) Poisson line processes. For 
a color version of this figure, see www.iste.co.uk/gogu/uncertainties.zip 

The remainder of this section focuses exclusively on Poisson point processes. 
The reader is referred to Van Lieshout (2000) and Daley and Vere-Jones (1988) for 
a description of other random point processes. 

2.3.1. Homogeneous Poisson points processes 

Let ܺ be a realization of a random point model and ( )T K  its Choquet capacity. 

We consider the spatial distribution:  

( ) = { ( ) = }, 0KP n P N K n n ≥  

defined for any compact set ܭ and integer n , with ( )N K  the “count function”, 

namely the function that assigns with ܭ the number of points of X  contained in K . 
The Choquet capacity is by the way written as ( ) = 1 (0)KT K P− . 

It is natural to assume that in a compact set Kδ  of infinitesimal volume, the 
probability that a point is included in Kδ  is of the order of the volume of Kδ :  
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| | 0
( ) | |lim

K
T K K

δ
δ δ

→
∝  [2.27] 

Subsequently, it is assumed that:  

| | 0
( ) = | |lim

K
T K K

δ
δ θ δ

→
 [2.28] 

for any series of compact sets Kδ  of volume tending toward 0 containing a point, 
where θ  (with unit the inverse of a d-volume) is a constant. The parameter θ  is the 
intensity of the Poisson point process and designates a point density (number of 
points per unit of d-volume). 

DEFINITION 2.5.– A homogeneous Poisson point process of intensity 0 < <θ ∞  is a 
point process verifying [2.28] and such that the events K ∩ X ≠ ∅  

and K X′ ∩ ≠ ∅ or K  and K′  included in d  are independent as soon as K  and 
K′are disjoint. 

Let us calculate the spatial distribution of a homogeneous Poisson point process 
of intensity θ . Consider a compact set ܭ that we partition into ܰ subdomains of 
infinitesimal volume | |=| | /K K Nδ :  

| |! | |
( ) = ( | |) (1 | |) =

!( )! !

n n K
n N n

K
N K e

P n K K
n N n n

θθθ δ θ δ
−

−−
−

 [2.29] 

after using the Stirling ! = 2z zz z e zπ−  formula. According to [2.29], the spatial 
distribution of the point process is therefore, of fixed K , a Poisson distribution of 
mean | |Kθ , hence the name Poisson point process. Moreover, it is clear that:  

| |( ) = 1 KT K e θ−−  [2.30] 

Using [2.29], the probability of simultaneous events involving ܰ can be 
calculated such that:  

{ ( ) = , ( ) = }P N K n N K n′ ′  

=0

= { ( ) = } { ( \ ) = } { ( \ ) = }
n

i

P N K K i P N K K n i P N K K n i
′

′ ′ ′ ′∩ − −  
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for any pair of compact set K , K′  with n n′ ≤ . A similar general formula can be 
used to calculate the probability of the event 1 1( ( ) = )N K n ∩  ... ( ( ) = )N NN K n∩
for iK ∈ , 0in ≥ , 1N ≥ . 

NOTE.– Most authors define a Poisson point process as a spatial distribution process 
[2.29] and such that ( )N K and ( )N K ′  are independent random variables for disjoint 

K and K′  (see, for example, Lantuéjoul 2002).  

THEOREM 2.5.– Let us assume that ( ) =N K n in a certain domain K . Based on 

property [2.28], the n  points are uniformly distributed in K and it can be shown 
that:  

ܲ | | | |
{ ( ) = | ( ) = } = 1

| | | |

n n nn K K
P N K n N K n

n K K

′ ′−′ ′    ′ ′ −    ′     
 [2.31] 

for K K′ ⊂ , n n′ ≤ . Therefore, to simulate a Poisson process in a finite volume 
domain K , one simply has to randomly draw an integer n according to the 
probability distribution [2.29], then to implant n points uniformly in K . 

2.3.2. Inhomogeneous Poisson point processes 

In an inhomogeneous Poisson point process, the density ߠ is now a function of x:  

| ( )| 0
( ( )) = ( ) | ( ) |lim

K x
T K x x K x

δ
δ θ δ

→
 [2.32] 

where the ( )K xδ  are a sequence of volume compact sets tending to 0 and 

containing the point ݔ. One further defines:  

( ) = d ( )
K

K x xθ θ  [2.33] 

As with a homogeneous Poisson point process, the random variables ( )N K  and 

( )N K ′  are independent if the compact sets K  and K′  are disjoint. 

Equation [2.29] then remains valid, provided | |Kθ  is replaced by ( )Kθ :  

( )( )
( ) =

!

n K

K
K e

P n
n

θθ −
 [2.34] 
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which is still a Poisson distribution. Similarly, we have:  

( )( ) = 1 KT K e θ−−  [2.35] 

NOTE.– In the case where the intensity ( )xθ  is a random, locally integrable function, 

a Cox process is obtained (Lantuéjoul 2002). This random point process is not a 
Poisson point process, since ( )N K  is not generally a random Poisson variable (see 

Lantuéjoul (2002) for examples of non-Poisson distributions). A relevant example of 
a Cox process is obtained when ( )xθ  is the indicator of a random set, which allows 

the construction of multiscale sets (Jeulin and Ostoja-Starzewski 2001; Willot and 
Jeulin 2011). 

2.4. Boolean models 

2.4.1. Definition and Choquet capacity 

The Boolean model is based on two fundamental components:  

– a random Poisson point process of intensity ( )xθ  (see section 2.3);  

– a family ( )A x  ( dx ∈ ) of random non-empty compact sets included in .d  

They are used in the following definition: 

DEFINITION 2.6.– The Boolean model of intensity ߠ associated with the family ( ( ))A x  

is the union of all the compact sets ( )A x  implanted on the germs of a Poisson point 

realization  of intensity θ :  

= ( )
x

X A x
∈



 [2.36] 

THEOREM 2.6.– Now let K  be a compact set of d  and X  a Boolean model of 
primary grain A  and intensity θ . The number ( )N K  of primary grains intersected 

by K follows a Poisson distribution of parameter { ( )}A Kθ ⊕ :  

{ ( )}{ ( )}
{ ( ) = } =

!

n
A KA K

P N K n e
n

θθ − ⊕⊕ 
 [2.37] 
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This property leads to the following theorem: 

THEOREM 2.7.– If the average number of primary grains encountered by  
K is finite { ( )} <A Kθ ⊕ ∞ , the Choquet capacity of the Boolean model X is 

written as:  

{ ( )}( ) = 1 A KT K e θ− ⊕−   [2.38] 

for any compact set K  included in d , where we set:  

( ) = d ( )
B

B x xθ θ  [2.39] 

For a stationary model:  

| ( )|( ) = 1 A KT K e θ− ⊕−  [2.40] 

Finally, for a stationary model of homogeneous intensity:  

| |( ) = 1 A KT K e θ− ⊕−  [2.41] 

where | |A K⊕  is the mean of the Lebesgue measure of the primary grain A dilated 

by the compact set K.  

The above theorem gives in particular an expression of probability { }P x X∈ . 

THEOREM 2.8.– The volume fraction of the stationary Boolean model X of primary 
grain A and homogeneous intensity θ  is written as:  

| |({ }) = { } = 1 AT x P x X e θ−∈ −  [2.42] 

The above formula can be demonstrated by elementary means. Let ݂ be the 
volume fraction of the random set X, a Boolean model of primary grain ܣ and 
intensityθ . Assume that X is ergodic and denote = /N Vθ , where N is the number 
of grains included in a large size domain ܸ. After adding ݀ܰ grains, the volume 
fraction ݂ is changed into df f+  and the intensity into dθ θ+  with d = d /N Vθ . 

Now we have on average:  

d | |
d = (1 )

N A
f f

V
−
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Indeed, it is clear that d = d | | /f N A V  if = 0f  and, on the other hand, if > 0f , 

this value must be weighted by the volume intersected by cX  only, from which the 
term 1 − ݂ is derived. Hence, one has d / (1 ) =| | df f A θ−  by integration 1 =f−

| |Acste e θ−+ , the constant being 0. 

NOTE.– Theorem [2.42] is also known in crystallization as the Avrami equation 
(Avrami 1939). 

We can demonstrate [2.41] from [2.42]. In effect, one has 1 ( ) =T K−

{ }cP K X⊂ . Let xK be a compact set centered at dx ∈ . Then, we have:  

[ ]( ) ( ) = ( ) cc c c
x

y

K X x X K x X K A y K
∈

⊂ ⇐ ∈ ⇐ ∈ ⊕ ⊕


  

Therefore, xK  is included in the complement of ܺ if and only if ݔ belongs to the 

complement of the Boolean of germs   and primary grain A K⊕ . We thus exactly 
obtain formula [2.41]. 

The volume fraction of ܺ is denoted by = { }f P x X∈ . We can rewrite [2.41] in 

the form:  

| |/| |( ) = 1 (1 ) A K AT K f ⊕− −  [2.43] 

2.4.2. Properties 

Boolean random sets verify the following fundamental properties:  

– Matheron (1975) showed that Boolean models are “infinitely divisible”. A 
random set X is infinitely divisible if, for any integer > 0n , X is the union n  of iY  

independent random sets i iY∪ . This property implies that the union of two 

realizations of a Boolean model is still Boolean (Serra 1981); 

– a section (intersection with a space smaller than d ) of a Boolean set is still 
Boolean (Serra 1983). It should be noted that one cannot generally infer all the 

characteristics of the model in space d  from those obtained in a section. A 
counterexample is given by a Boolean random set in which some primary grains are  
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reduced to points. Nevertheless, all the information provided by the functional 
( )T K  can be found when K is itself included in the space of smaller dimension. 

This includes the volume fraction. For a 3D isotropic model, the covariance is 
recovered from a section according to a straight line of the model, and thus 
providing access, for example, to the specific surface; 

– Boolean models are stable by dilation. This property is derived from the 
Choquet capacity formula, where the dilation of a Boolean model of primary grain ܣ 
by a compact set ܭ is a Boolean model of primary grain A K⊕  (Serra 1981). 

Let us examine the “domain of attraction” of the Boolean model. Some limits of 
unions of random partitions are Boolean models (Serra 1981, 1983; Chiles and 

Delfiner 2009), in the following sense. Let X be a random partition of d and { }iX ′  

( i ∈  ) be a family of random sets obtained by choosing each cell of X 
independently with a probability p , and taking the union closure of the chosen cells.  

– We set:  

=n i
i n

Y X
≤

′  [2.44] 

We leave n → ∞ , 0p →  such that =pn θ  with fixed 0 < <θ ∞ . Then we 

show that, for any compact set ܭ:  

1| | {| |}( ) = 1lim
X X K

n
n

T K e θ −′ ′− ⊕

→∞
−   [2.45] 

where ܺᇱ is the class of the cells of the random partition X and ௡ܶ the Choquet 
capacity associated with ௡ܻ. According to the Choquet–Matheron–Kendall theorem, 
the limit of ஶܻ of the ( )n nY  exists and is unique and in addition, ஶܻ is boolean.  

NOTE.– The above property shows that Boolean models are obtained as the limit of 
non-Boolean random partition unions. This property can be seen as a central limit 
theorem for random sets (Serra 1981; Cressie and Laslett 1987), the union [2.44] of 
random sets acting as the sum for random variables. This property further suggests 
that the Boolean model, for random variables, plays an analogous Gaussian-like role 
for random sets. 
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2.4.3. Covariance 

The covariance ( )C h  of X  is calculated using the Choquet capacity. It is 

written as:  

| |2 2 ( )/ (0)( ) = 2 1 (1 ) = 2 1 (1 )
A A hhC h f f e f f

θ γ γ∩ −− + − − + −  [2.46] 

where ( ) =| |hh A Aγ ∩  is the geometric covariogram of A. 

Simple analytical formulae for the geometric covariogram are known for certain 
primary grain forms only. For a disc of radius R:  

2
2 1( ) = 2 1 (2 )cos

2 2 2

h h h
h R H R h

R R R
γ −

 
    − − −       

 

 [2.47] 

where ( ) = 1 ( )H
+

⋅ ⋅  is the Heaviside function. For a sphere of radius ܴ:  

3 3

3
4 3

( ) = 1 (2 )
3 4 16

R h h
h H R h

R R

πγ
 

− + −  
 

 [2.48] 

Although its definition is very simple, the geometrical covariogram is known 
only for a few elementary forms, including cylinders of revolution (Gille 1987; 
Willot 2017), ellipsoids, half-spheres and a few other forms (Gille 2016). It is also 
known in random forms derived from specific partitions such as Poisson polyhedra 
(Matheron 1972), cells of a Voronoi partition (Brumberger and Goodisman 1983), 
or from the typical grain of a dead-leaves pattern (Gille 2002). 

2.4.4. Other characteristics 

2.4.4.1. Three-point function 

Let 1 2= { , , }K x x h x h+ + , according to [2.41] we have:  

| |1 2
1 2 1 2( , ) = { , , } =

A A Ac c c h hC h h P x X x h X x h X e
θ− ∪ ∪− −∈ + ∈ + ∈  

3 ( ) ( ) ( , )1 2 1 2= (1 )
r h r h s h h

f
− − +

−  [2.49] 
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with:  

1 2
1 2

| |( )
( ) = , ( , ) =

(0) (0)
h hA A Ah

r h s h h
γ
γ γ

− −∪ ∪
 [2.50] 

Here again, the main difficulty lies in evaluating the functional s for non-trivial 
primary grain forms. 

2.4.4.2. Contact distribution 

Assume a point ݔ is in the complementary of X and let   be its distance from X. 
The distribution function of   is given by (Serra 1980):  

1 ( )
{ } = 1

1
LT B

P L
f

−
≤ −

−
  [2.51] 

where LB  is the ball of radius ܮ. 

2.4.4.3. Specific surface area 

The specific surface area of a three-dimensional Boolean model ܺ is obtained 
using [2.12a]:  

(0)
( ) = 4 (1 ) log(1 )

(0)VS X f f
γ
γ
′

− −  [2.52] 

where ( )hγ  is the geometric covariogram of the primary grain of the model X. We 

note that /VS f cste  when ݂ → 0, which is expected for grains almost isolated 

from each other, without interpenetration. On the other hand, / (1 )vS f− 

log(1 )f− → ∞ in the dual case 1f −→ . Indeed, when ݂ → 1, the Boolean model is 

composed of a set of very elongated objects that are the (uncovered) interstices 
between primary grains, and these interstices have a surface/volume ratio that 
becomes infinite. 

2.4.4.4. Linear erosion curves for convex primary grains 

Assume that ܣ is a convex random compact set. Steiner’s formula [2.19] allows 
us to explicitly calculate ( )T K . The measure of A Kλ⊕  is in particular a 

polynomial of degrees ݀ in ߣ, whose coefficients depend on the Minkowski 
functionals of ܣ. If, for example, = [ ; ]K x x h+  is a segment of length ℎ and  
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orientation, | |=| | | |A K A h Aα⊕ + , where Aα  represents the length of the boundary 

of ܣ in the direction of dilation ߙ. The probability c
XP  that a segment L of length h 

is included in the complement of the Boolean model is then (see equation [2.22]):  

{ } ( )

( ) ( ) ( ) ( ) ( )0 0 1 0 / 0

( )

          1

A h AA Kc c
X

h h

P h P L X e e

e f

αθθ

θ γ γ γ γ

− +− ⊕

′ ′− −   − 

= ⊂ = =

= =  −
 [2.53] 

This relation is particularly useful because it allows testing the validity of the 
Boolean assumption: for any convex primary grain, the linear erosion curve of a 
Boolean model varies exponentially with the length. 

NOTE.– By taking a Cox process as a set of germs, itself based on a Boolean model, 
multiscale structures can be generated (see, for example, Jean et al. 2011).  

An upper bound on the length of the minimum path length going through a 
Boolean medium of uniform intensity having disks or squares  
(d = 2) or hyperspheres (d > 2) as the primary grain was calculated by Willot (2015) 
for a diluted volume fraction (݂ ≪ 1).  

This bound shows non-trivial exponents ( 2/3f  for d = 2, for 1/2f  d = 3), 

and a diameter-dependent prefactor in the direction of propagation of the primary 
grain. 

Doi (1976) calculated the surface correlation functions of a three-dimensional 
Boolean model of spheres. For a random set X, these correlation functions are 
defined by the quantities:  

1 2 1 2( , ) = ( ) ( )svF x x x s xχ   [2.54a] 

1 2 1 2( , ) = ( ) ( )ssF x x s x s x   [2.54b] 

with ( )χ ⋅  with the indicator of X, 1 ( )χ− ⋅  that of X c and:  

( ) =| ( ) |s x xχ∇  [2.55] 

where ∇  is the nabla vector-operator of components / ix∂ ∂  (݅ =  ௜ beingݔ ,(݀ ,... ,1

the ith component of ݔ in a Cartesian coordinate system. For a stationary random 
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set, the correlation functions ܨ௦௦ and ܨ௦௩ depend only on ݔଵ −  ଶ, and only onݔ

1 2=| |h x x− for an isotropic model.  

We also have, when h → ∞ (Torquato 2013):  

2( ) , ( ) ,sv ssF h fs F h s r → ∞   [2.56] 

where ݏ is the specific surface area of X∂ . 

Torquato (2013) gives for the Boolean sphere model, in dimension 3:  

3log(1 ) ( ) 1
( ) = 2 1 (2 )

(0) 2 4sv
f h h

F r H R h
R R

γ
γ

 − −   − − − −       
 [2.57a] 

22

2

9 (1 )( ) 1log
( ) = 2 1 (2 )

(0) 2 4ss
fh h

F r H R h
RR

γ
γ

  −    − − − −         
 [2.57b] 

3log(1 )
(2 )

2

f
H R h

hR

− − − 


 

The functions ܨ௦௩ and ܨ௦௩ appear in particular in the expressions of certain 
bounds of the permeability of porous media (Doi 1976; Berryman and Milton 1985; 
Willot et al. 2016; Bignonnet 2018). 

2.5. RSA models 

The random sequential adsorption (RSA) model (Talbot et al. 2000) is a model 
in which, unlike the Boolean model, grains are added sequentially by prohibiting 
interpenetration. In the simplest case, the intensity is taken uniformly in ܴௗ. When a 
grain partially overlaps a grain previously positioned, it is rejected (see Månsson and 
Rudemo (2002) for other disjoint grain models). Few exact results are known for the 
RSA model, except in the one-dimensional case (Torquato 1995). 

For a small volume fraction of the random set, the RSA model is asymptotically 
equal to a Boolean medium and the grain positions are those of a Poisson point 
process (Månsson and Rudemo 2002). The RSA model does not allow high-density 
realizations to be generated. In this case, special techniques must be implemented, in 
which objects are placed and restoring forces are imposed between interpenetrating 
objects. This approach was proposed in particular for the modeling of fibrous media 
(Altendorf and Jeulin 2011).  

Comment [User1]: AQ: Should “dimension 3” be changed to “three dimensions”?
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The images in Figure 2.3(a) show two-dimensional, cross-sections following two 
orthogonal directions, of a composite material, and Figure 2.3(b) shows a random 
fiber model reproducing the microstructure characteristics, with in particular the 
radius of curvature of the fibers and their tortuosity. 

 
                                                                         a) 

 
                                                                         b) 

Figure 2.3. (a) Composite fibrous medium; (b) model (source: taken  
from Altendorf et al. 2014)). For a color version of this figure, see 

www.iste.co.uk/gogu/uncertainties.zip 

2.6. Random tessellations 

A random tessellation or partition of space is by definition a set of pairwise 

disjoint bounded open subsets (cells) of d  and whose union closure covers the 
whole space. Matheron (1969) showed that probabilities could be defined on a  

σ-algebra defined based on such tessellations of d  to which the set of points 
located at the edges of the cells is added (see Lantuéjoul 2002). 
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Two approaches are possible to calculate properties relating to grain 
characteristics (number of neighbors, average surface area, etc.). In the first case, the 
focus is on the cell containing the origin (there is one with probability 1), called the 
fundamental cell. In the second approach, the distribution of a characteristic is 
calculated from all the cells of all the realizations, or from all the cells of a 
realization of an ergodic model. Although no particular cell has been chosen, it is 
referred to as typical cell in this case. In the first case, which is a volume 
distribution, large volume cells will be more represented than in the second case, 
which consists of calculating a number distribution. 

In all the following examples, it is assumed that the number of cells intersected 
by a compact set is finite with probability 1. 

2.6.1. Voronoi tessellation 

The Poisson–Voronoi tessellation is defined by influence zones ( , )C g X  of the 

germs g of a Poisson point model  . The cell ( , )C g X  associated with the germ 

g ∈   is:  

( , ) = {  : | |<| | , }dC g X x x g x g g g g′ ′ ′∈ − − ∀ ∈ ≠   [2.58] 

This cell is a convex polytope delimited by parts of hyperplanes. Despite the 
simplicity of the model, the analytical results from the Voronoi model are limited. In 
three dimensions, the volume distribution of the surface of the typical cell tC  is 

known, whose mean is written as (Miles 1974; Møller 1989):  

1 1/

1 1/

2 ( 1)! (1 / 2) (2 1/ )
{| |} =

(( 1) / 2) ( 1/ 2)

d

t d

d d d
C

d d

π Γ Γ
θ Γ Γ

−

−
− + −∂

+ −
  [2.59] 

where ( )Γ ⋅ is the extension of the factorial function to   ( ) = ( 1)!n nΓ −  (n being 

an integer). Similar results are known for the mean lengths of the triple lines of  
the typical grain, and more generally for the d’-volumes of dimension <d d′  of the  
d’-facets of the typical cell of the Voronoi tessellation of dimension ݀. 

The number distribution of the area or volume of Voronoi cells is often modeled, 
in an approximate way, by gamma distributions (Ferenc and Néda 2007; Farjas and 
Roura 2008); this result being exact in dimension 1. It should be noted that the 2D 
section of a 3D Voronoi tessellation is not a two-dimensional Voronoi tessellation. 
The latter presents in particular distributions of distinct cell sizes. 

Comment [User2]: AQ: Should “dimension 1” be changed to “one dimension”?
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The distribution of the number of sides in the typical cell of a two-dimensional 
Voronoi partition was calculated by Calka (2003a). The same author studied the 
distribution of the area and perimeter of the same cell (Calka 2003b) and other 
quantities related in particular to the size of the largest disk included in the typical 
cell, which has a point in the cell as its center (Calka 2002). 

2.6.2. Johnson–Mehl tessellation 

A Johnson–Mehl tessellation is defined by a Poisson points process in d
+×  , 

the last dimension being a time dimension. Germs ig  ( = 1i , ..., ܰ) are implanted 

sequentially at times it  ( = 1i , ..., ܰ). The associated classes ( , )iC g X  are given by:  

| || |
( , ) = {  : < ,}

jd i
i i j

x gx g
C g X x t t j i

v v

−−
∈ + + ∀ ≠  [2.60] 

where v is a velocity of propagation of the edge cells. A different choice of v is 
equivalent to changing the spatial scale and does not fundamentally alters the model. 
The Johnson–Mehl model is perhaps the simplest random partition with non-convex 
grains. 

2.6.3. Laguerre tessellation 

Poisson–Voronoi and Poisson–Johnson–Mehl random tessellations depend 
essentially on one parameter, the intensity of the Poisson point process, which is a 
scaling factor and only trivially modifies the resulting structure. In many 
applications, it is desirable to generate random partitions with a prescribed 
distribution of a geometric characteristic of the cells. For example, consider the 
number-weighted distribution of the volume of cells. Each grain must then be 
assigned a weight representative of the characteristics of the grain. 

Given a process of random Poisson points ig , the Laguerre tessellation consists 

of dividing d  into cells defined as:  

2 2 2 2( , ) = {  : | | <| | ,}d
i i i j jC g X x x g r x g r j i∈ − − − − ∀ ≠  [2.61] 

where ir  are positive weights assigned to each germ, which follow a certain 

distribution  . Similarly to the Voronoi tessellation, the cells of a Laguerre 
tessellation are convex polytopes; however, unlike the Voronoi model, some cells 
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may be empty, and some may not contain their germ. The Laguerre model offers 
extra degrees of freedom compared to the Voronoi tessellation. The distribution of 
size   can be adjusted to simulate cells with volume distributions much more 
widely spread out than the random Voronoi tessellation (Lautensack and Zuyev 
2008), which makes it possible to model cellular media or foams (Redenbach 2009), 
or even polycrystals. 

2.6.4. Random Poisson tessellation 

A Poisson tessellation is defined by a set of hyperplanes in d . Each hyperplane 
is parameterized by its distance from the origin and a direction in the half-

hypersphere dS+ . The model can thus be seen as a Poisson process in d
dS+× . 

Thereby, it is completely determined by a single parameter, the intensity θ  of the 
Poisson point process. The cells of the Poisson random tessellation are the subsets of 

d  delimited by the boundaries of the Poisson hyperplanes. 

A large number of exact results are available for the typical polytope of the 
Poisson partition. Miles (1964, 1974) calculated its average perimeter (݀ = 2), the 
average number of vertices, the average total length of its edges, and its average area 
(݀ = 3). In general, for the volume dF ′  of the d d′ ≤ -dimension variety of the 

typical polytope tC :  

1

2
{ } =

( )

d

d d
d d

d
F

d ω ω θ
′ ′

′ −

 
 ′ 

  [2.62] 

Matheron (1975) gives the mean value of the Minkowski function of tC :  

1

2
{ ( )} = , 0

d i
i

i t
d i d

W C i d
ω

ω ω θ

−

− −

 
≤ ≤ 

 
  [2.63] 

Miles (1974) gives the average number ܰௗᇲ of the d′-face ( d d′ ≤ -dimensional 
variety) of the typical cell tC :  

{ } = 2d d
d

d
N

d
′−

′
 
 ′ 

  [2.64] 
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In addition, it is shown that the random partition obtained by intersection of a 

Poisson partition in d  by a dimensional hyperplane ݀ᇱ is still a Poisson partition in 
d ′ . Its intensity is written as (Miles 1964): 

1

1
= d

d

ωθ θ
ω

−

′−
′  [2.65] 

The first three moments of the volume distribution of the fundamental cell fC  

of the Poisson partition were obtained by Matheron (1975). Its mean is more 
specifically written as:  

1

!
{| |} =

( )
d

f d
d

d
C

ω
ω θ−

  [2.66] 

Poisson random partition models have been used in particular to model the 
granulometries obtained by screening concrete aggregates (Escoda et al. 2015) or to 
simulate cementitious materials (Heinemann et al. 1999). On the other hand, these 
cells can be used as random primary grains of Boolean models, for example to 
represent tungsten carbides (Quénec’h et al. 1996). 

2.6.5. The dead-leaves model 

The dead-leaves model was originally introduced by Matheron (1968) and 
extended by Jeulin (1979) (see also Serra 1983). It is a sequential Boolean model 
that asymptotically fills up the whole space and defines a random partition. It makes 
use of n  “colors” indexed by an integer i ∈  . The “leaves” are random compacts 

sets of d , which appear at times < < 0t−∞ , according to a Poisson point process 

of intensity ߠ in d
−×  . Each leaf is assigned a color in   independently of the 

color of the other leaves. The colored leaves ݅ appear in the time interval [ ; d ]t t t+  

with a probability ip . Those that appear in the time interval [ ; d ]t t t+  form a 

Boolean model where the random compact set iA  is the primary grain. The grain 

that appeared in ݔ at time ݐ is denoted by ( , )A x t . The grains cover those that 

appeared previously. 

At time = 0t , the space d  is covered at every point by a grain with a 
probability of 1. The random partition is formed by uncovered cells ( , )A x t . These 

are additionally identified by a color in ܫ. The cells are in general not connected. 
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We know how to calculate for this model the probability that each point iy  in a 

finite set of points dY ⊂   is of a given color, depending on iy  (Lantuéjoul 2002). 

In particular, we have access to the two-point spatial distribution, which is written 
using the Lantuéjoul (2002) notations:  

( ) ( )
{ ( ) = , ( ) = } =

(2 )
i j j j i i i ija a b a a b ab

P Z x i Z y j
a a b

δ− + − +
−

 [2.67] 

where ijδ  is the Kronecker symbol, ( )Z x  is the color of the partition at point x at 

the time = 0t  and:  

= {| |}, = ( ), = , =i i i i i i i i
i i

a p A b p K x y a a b bθ θ −    [2.68] 

with ( )iK ⋅ the geometric covariogram of iA :  

( ) ( ){ }{ , } \ { } = (0) ( )i i i iA x y A x K K x y⊕ − −   [2.69] 

The dead-leaves model is often used to model occlusion phenomena in natural 
images (Lee et al. 2001), or to analyze two-dimensional images obtained by electron 
microscopy, powders for example (Jeulin et al. 1995). Furthermore, the set of intact 
grains at ݐ = 0 is an interesting random model for generating high-density stacks, if 
the intensities and grains are properly chosen over time (Jeulin 2019). 

2.6.6. Generalized random partition models 

Random partitions based on Poisson point processes can be generalized using 
local metrics (not necessarily Euclidean) attached to each germ (Jeulin 2013) and 
reinterpreted from Boolean function models. Figure 2.4(a) shows an example of  
a non-convex grain random partition (Gasnier et al. 2015a), obtained from a 
generalized Johnson–Mehl model with an anisotropic distance. The latter models a 
polycrystal whose grain boundaries, seen by scanning electron microscopy (SEM), 
have been separated from their backgrounds (see Figure 2.4(b)). The model is three 
dimensional, and the SEM image is two dimensional. The cell shapes in the 
Johnson–Mehl model with an anisotropic distance are more elongated than in the 
classical Johnson–Mehl model. The model is macroscopically isotropic. 
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Figliuzzi (2019) proposes an approach enabling grain interfaces to be generated 
with controlled roughness and a method for the rapid simulation of random 
partitions on a voxel grid. 

 
                                                 a)                                              b) 

Figure 2.4. (a) Two-dimensional section of a Johson–Mehl random partition 
modeling a polycrystal; (b) segmented experimental image (source: image  

(a) from Gasnier et al. 2015b); image (b) from Philippe Lambert/CEA le Ripault)  

2.7. Gaussian fields 

In this section, we briefly define Gaussian random functions as well as Gaussian 
excursions, and describe how they may be simulated. The theory of Gaussian 
functions was originally studied by Rice (1944) in the one-dimensional case and by 
Longuet-Higgins (1957) in two-dimensional case. Bardeen et al. (1985) define a 
Gaussian random function as a function whose ݊-point distribution laws are 
multivariate Gaussian. 

Gaussian excursion models allow one to simulate microstructures having a fixed 
covariance function. The covariance, in fact, fully determines the Gaussian random 
function. The remainder of this section explains how to generate such a model. For a 
detailed description of Gaussian random functions, see Lantuéjoul (1994, 2002). 

Let ( )U x  be a Gaussian noise, namely such that ܷሺݔሻ is a normal distribution 

for all x and ( )U x , ( )U x′  are independent if x x′≠ . 
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We consider the random function ( )Z x  and the random set ܺ:  

{ }= ; ( )dX x Z x λ∈ ≥  [2.70a] 

( ) = ( )( ), ( ) (0,1)Z x w U x U x∗   [2.70b] 

where w  is a weight function, ߣ a scalar, designates a convolution product, and 
(0,1)  is the normal distribution of zero mean and variance 1. The mean of the 

indicator function of X is equal to:  

= { ( ) } = { (0,1) }f P Z x Pλ λ≥ ≥  [2.71] 

which determines ߣ according to ݂:  

1= (1 )F fλ − −  [2.72] 

where ܨ is the cumulative distribution function of the normal distribution.  

The weight function w  verifies:  

2( )d =1, ( ) = ( )w x x w x w x
Ω

−  [2.73] 

This is related to the covariance ( )C h  by ܺ (Bron and Jeulin 2011):  

2
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1
20

1 1
( ) = d

2 1
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tC h e t
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π

−
+

−
  [2.74] 

where ( ) = ( )( )X h w w hρ ∗ .  

The function w  is obtained by means of: 

{ }1= { }w FT FT ρ−  [2.75] 

where FT and FT 1−  are the direct and inverse Fourier transforms in d . Once λ  is 
calculated, the function ρ  is obtained by numerically inverting [2.74] and w is 

given by [2.75]. 
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                                                  a)                                               b) 

 
                                                  c)                                               d) 

Figure 2.5. (a and c) SEM image (after segmentation) of fuel cell anode layers; 
(b and d) plurigaussian model (source: from Abdallah et al. 2015) 

A model based on Gaussian excursions is developed by Abdallah et al. (2015) 
(see Figure 2.5). To simulate a three-phase random medium, it is assumed that there 
are two independent random sets X  and Y  such that one of the phases is given by
X , another by \Y X  and the third by the complementary of the union of the other 

two. Due to the independence of the random sets ܺ and ܻ, the cross-covariance C12 
of the phases 1 and 2 is given by the covariances C1 and C2 of these same phases. In 
effect:  

12 ( ) = { (1); (2)}C h P x phase x h phase∈ + ∈  2 1 1

1

(0)[ (0) ( )]
=

1 (0)

C C C h

C

−
−

 [2.76] 

This property allows one to test whether modeling using independent sets X and 
Y is possible, regardless of the choice of X and Y. Moreover, the covariances of X 
and Y can be calculated from those of phases 1 and 2. Figure 2.5 represents the 
results obtained in the case of Gaussian excursions for X and Y. This model is used 
to represent the microstructure of anode layers consisting of two solid phases and a 
porous phase, existing in some fuel cells and for which only two-dimensional 
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representations are known. The model has been compared to a graph-based approach 
(Neumann et al. 2019). 

2.8. Conclusion 

In this chapter, we have presented some of the most commonly used random 
models. They are parsimonious in the sense that they are defined by few parameters. 
In general, they can be easily simulated and, in some cases, analytical results are 
available. They can be directly used to model a particular microstructure or 
combined with one another to generate sets representative of microstructures, 
especially multiscale structures (an example of such combination is shown in Figure 
2.6). Nevertheless, numerical calculations and simulations, not discussed in this 
chapter, are often necessary to accurately represent real microstructures. 

 
                                                  a)                                               b) 

Figure 2.6. (a) SEM image of a fuel cell foam; 
(b) realization of a “Boolean random shell model” (source: from 
Abdallah (2015), image (a) from A. Chesnaud/Mines ParisTech) 

The main difficulty with these approaches lies in the determination of the 
relevant morphological criteria and the choice of a model. To illustrate this problem, 
one can refer to Figure 2.7, which represents three isotropic microstructures with the 
same covariance and same three-point functions (Chilès and Lantuéjoul 2005). This 
example illustrates the extent to which the covariances and even the trivariate 
functions remain “blind” and do not allow us to distinguish geometries that are very 
different from one another. Within the context of random set approaches, the issue 
surrounding the choice of model remains an open problem. 



Characterization and Modeling of Media     35 

 
                             a)                                       b)                                            c) 

Figure 2.7. Random realizations of three probabilistic models with the same  
trivariate function: (a) Gaussian excursion; (b) random Poisson partition; 

(c) dead-leaves model (source: from Chilès and Lantuéjoul 2005) 
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