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Banding patterns in elasticity : cracked polycrystal
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Onset of a low percolation threshold in polycrystals with hexa-
gonal symmetry, as crystal anisotropy increases.

Interpreted as the develop-
ment of weakly-loaded re-
gions around cracks.

To which extent may homogenization theories
be used to predict not only the self-consistent
but the entire elastostatic probability distribu-
tion field ?

Refs : Barthelemy & Orland (1997), Cule & Tor-

quato (1998), Idiart et al (2006), Giordano (2007)



Elastostatic probability field distributions

Homogeneous cracked body under plane strain & biaxial stress loading
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Modeling of the stress intensity factor around each crack as a Gaussian
probability distribution q. Van Hove singularities smoothed out, except at
σij = 0± and ±∞.
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Elastostatic probability field distributions

Van Hove singularities for the Eshelby inclusion problem computed
making use of asymptotic expansions of the local stress fields in regions
of interest. Allows one to derive estimates for the corresponding
singularities in the p.d.f. for populations of interacting cracks

P̃ij(t) =

∫ +∞

−∞
ds

q(s)

|s|
P ij

( t
s

)
Eshelby parallel randomly-oriented

t = 0± = { σxx

σyy
σxy

H(t) − log t
[a + bH(t)]|t|−1/3

H(t)|t|−2/3 [a + bH(t)]|t|−2/3

|t|−1/2 |t|−1/2 log2 |t|

t = ±∞ = { σyy , xxσxy

H(t)|t|−5 [a + bH(t)]|t|−5

|t|−5

H(t) : Heaviside function.
Powerlaw decay with exponent −5 for the distribution of the stress field.
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Elastostatic probability field distributions

Comparison with Fourier numerical results. Crack density η = Na2/S = 0.035
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FFT data consistent with the scaling law ∼ t−5 when t → ±∞ with much lower
prefactor when t → −∞.
Analysis restricted to a low crack density. Local loadings in arbitrary directions,
making use of a multivariate distribution q, not considered here.

t → ±∞ :

P̃yy (t) ∼ ωπη
|t|5

self. cons. &
Eshelby incl.︷ ︸︸ ︷∫ ∞

0

ds s4q(sign(t)s)

ω =

{
1089/512 (parallel)
585/512 (random)



Nonlinear random media : context and motivation
Emergence of special flow paths in model of nonlinear varistors (Roux
et al, 1987 ; Donev et al, 2002). Shortest path and minimum cut
problems, or minimal manifolds. Strain localization. Related problems in
mechanics (e.g. damage induced by cracks).
A simple example : network of nonlinear conductors
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Equivalence between effective current thre-
shold and minimal path in the dual lattice

Problem : nonlinear conducting material in the continuum with
randomly-distributed insulating (or highly-conducting) inclusions, in 2D.
Anti-plane perfect plasticity.
Refs : Drucker (1966), Roux & François (1991), Roux & Hansen (1992), Ponte

Castañeda & Suquet (1997), Donev et al (2002), Duxbury et al (2006), Jeulin &

Ostoja-Starzewski (2007), Sillamoni & Idiart (2016), Furer & Ponte Castañeda (2018)



Boolean model of disks : shortest path

Equisized disks of radius D, homogeneous Poisson point process of
intensity θ. Join points A to B by a path passing through disk with
centers C i

Corresponding upper-bound :

ξ ≤

∑N
i=1

(√
`2
i + m2

i − D
)

+ Z∑N
i=1 `i

Idea : choose disk C i+1 in the region :

C 
i

C 
i+1

|C i+1
1 −C i

1| = inf
{
|C1 − C i

1|; C a disk center ;

C1 > C i
1 + D, |C2 − C i

2| ≤ b
√

D|C1 − C i
1|
}
.

b to be optimized on



Geodesics in the Boolean model of disks

C 
i

C 
i+1

Upper bound obtained by :

P {`i > `} = exp (−θµ2(K ))

with K =domain enclosed by the two
√

curves and the line ` = `i .

Sharpest bound obtained with the choice b =
√

3/2 :

ξ ≤ 1− 3

Γ
(

2
3

) ( 3f

2π

)2/3

+ O(f 4/3) ≈ 1− 1.3534f 2/3, f → 0

Boolean model of arbitrary grain and “cost” 0 < p < 1 in the grains :

ξ ≤ 1− (1− p)4/3 35/3

4Γ
(

2
3

) (w2
g f

Ag

)2/3

ξ ≤ 1− (1− p)f

Consistent with numerical computations &
“second-order” nonlinear homogenization theory
in the anti-plane problem (up to numerical pre-
factor)
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Two-scale Cox-Boolean model

Boolean model of disks aggregated into clusters

f = fclusfin, fclus, fin � 1

Dilute limit expansion :

ξ ≤ 1− α(1− p)4/3f
2/3

clus , α = 1.35

Numerical computations :

ξ ≈ 1− α(1− p)4/3f
2/3

clus , α = 1.85

Scale separation : p ≈ 1− αf 2/3
in

Dilute expansion for the two-scale model :

ξ ≈ 1−max
{
α7/3f

8/9
in f

2/3
clus , αf

2/3
in fclus

}



Two-scale Cox-Boolean model

Bounds prediction
in the dilute limit
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Regime change when fclus = cste and fin varies. Related to the presence and
absence of rugosity at the macroscopic scale.



Two-scale Cox-Boolean model

Comparison with numerical results in the case fclus = cste. Varying values
of fclus.
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N-scale Cox-Boolean model

Pores embedded in clusters of pores embedded in super clusters, etc.
Total porosity : f = f1...fN . Let fi = f βi (

∑
i βi = 1).

1−ξ ∼ f ν1 , νN =
2βN

3
, νi = νi+1+

2

3
βi+

1

3
min {βi ; νi+1} , 1 ≤ i < N.

Properties : 2/3 ≤ ν1 ≤ (1 + 2−N)−1 → 1 (N →∞).

• Lowest exponent (i.e. highest effect of the pores) obtained when
β1 = 1 (clusters fraction decrease very slowly except at the highest
scale) or βN = 1 (clusters fraction decrease very slowly except at the
lowest scale).

• Highest exponent (i.e. lowest effect of the pore) obtained when
βi = νi+1. However, as N →∞ “almost” any choice of β1 leads to
ν1 ≈ 1, i.e. a linear correction.



Model of rigid grains

Rigid grains (minimal paths avoid grains)

Boolean model

i+1m

′

ξ ≤ 1− (log f )f 3, f → 0.

i+1m

′

ξ ≤ 1− 3
8 (log f )f 2, f → 0.

Random sequential ad-
sorption model of squares.

ξ ≈ 1 + f 2/32, f → 0
(non-rigorous analysis)

w⊥gAg
ξ ≈ 1 +

(w⊥
g )4

32A2
g
f 2, f → 0

(grains with moderate aspect ratio)



RSA model of squares

Numerical data collapse (n the number
of squares in the numerical simulation)
Consistent with the scaling law

ξ ≈ 1 + (1/32)f 2, f → 0
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rigid squares

For squares with cost p > 1

ξ ≈ 1 + min
{

(1/32)f 2, (p − 1)f
}

For a N-scale model of rigid squares (f = f1...fN , fi = f βi ,
∑

i βi = 1)

ξ−1 ∼ f ν , ν = β1+max(β1, β2+max(β2, β3+...+max(βN−1, 2βN)...)

with 1 ≤ ν ≤ 2. Minimal value of ν (maximal effect of the inclusions)
obtained when βi = 2βi+1. As N →∞, ν → 1 for almost all choices of
βi . Consistent with the bound Y0/Y ≤ 1 + (7/2)f (Goldsztein, 2011)



Stokes flow in porous media

Boolean model of oblate cylinders with high aspect ratio, and high
volume fraction

Pores/
cylinders

Obstacles
(vol. frac.
q) q = 14% q = 2.7%

Stokes flow (viscosity µ, pressure p, velocity field ~u)

µ∆~u = ~∇p, 〈~u 〉 = −k

µ
〈~∇p〉



Stokes flow in porous media

Berryman-Milton bound : k ≤ 2
3q2

∫∞
0

dt t
[
Fvv (t)− q2

]
Covariance function : Fvv (t = |t|) = P{x , x + t ∈ Obstacles} = q2−K(t)

Geometrical covariogram of the cylinder C (radius r , height h) :

K (t) = E

{
|C ∩ Cr |
|C |

}
≈

{
1− (r+h)t

2rh + 2t2

3πrh if t < h,(
h2

6t2 − 1
)

h
2πr

√
1− t2

4r2 + h
πt cos−1 t

2r if t > h.

In the limit of infinitesimal volume fraction of obstacles and very large
aspect ratios, two regimes appear :

k ≤

{
8h2

3q(log q)2

[
1 +

(
1
2 log q − 1

)√
q
]

q → 0 and afterwards r →∞,

− 8hr
9π log q r →∞ and afterwards q → 0
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Stokes flow in porous media

Berryman-Milton bound dilute expansion :

k ≤

{
8h2

3q(log q)2

[
1 +

(
1
2 log q − 1

)√
q
]

r � rc ,

− 8hr
9π log q r � rc

Fluid flow constrained to lie inside “chanels” (cylinders) when r � rc (k ∼
hr , k monitored by the tail of Fvv ). Fluid flow becomes unconstrained (flow
around isolated obstacles) when r � rc (k ∼ h2, k monitored by Fvv (t) in
the domain 0 < t < h)



Conclusion
I A link has been established between the effective yield stress (in

anti-plane shear) in porous and rigidly-reinforced perfectly-plastic
media and homogenized metrics

I Possible scenario for the localization bands in random particulate
media with dilute concentration of inclusions

I A “greedy” path gives scaling laws consistent with nonlinear
homogenization theories and with numerical results. In particulate
random microstructures, the method predicts corrections from
∼ f 2/3 (homogeneously-distributed pores) to ∼ f (aggregated pores
at many different scales).

I In multiscale structures, the value of the exponent depends on
whether the minimal path exhibits a rugosity at the various scales.
Regime changes are observed when rugosity appears at a given scale.

I The lowest effect of pores (highest exponent) is obtained when the
particle distribution corresponds to a regime change simultaneously
at all scales.

I Regime change for Stokes flow in porous media with long-range
correlations induced by the spatial distribution of obstacles

I Reconstruction of the local elastic fields in heterogeneous media.
Banding patterns in linear media with non-strictly convex potentials.


